DOI QR코드

DOI QR Code

Xenomai-based Embedded Controller for High-Precision, Synchronized Motion Applications

고정밀 동기 모션 제어 응용을 위한 Xenomai 기반 임베디드 제어기

  • 김채린 (서울시립대학교 기계정보공학과) ;
  • 김익환 (서울시립대학교 기계정보공학과) ;
  • 김태현 (서울시립대학교 기계정보공학과)
  • Received : 2014.10.02
  • Accepted : 2014.12.21
  • Published : 2015.03.15

Abstract

Motion control systems are widely deployed in various industrial automation processes. The motion controller, which is a key element of motion control systems, has stringent real-time constraints. The controller must provide a short and deterministic control message transmission cycle, and minimize the actuation deviation among motor drives. To meet these requirements, hardware-based proprietary controllers have been prevalent. However, since it is becoming difficult for such an approach to meet increasing needs of system interoperability and scalability, nowadays, software-based universal motion controllers are regarded as their substitutes. Recently, embedded motion controller solutions are gaining attention due to low cost and relatively high performance. In this paper, we designed and implemented an embedded motion controller on an ARM-based evaluation board by using Xenomai real-time kernel and other open source software components. We also measured and analyzed the performance of our embedded controller under a realistic test-bed environment. The experimental results show that our embedded motion controller can provide relatively deterministic performance with synchronized control of three motor axis at 2 ms control cycle.

다양한 산업 자동화 분야에 활용되고 있는 모션 제어 시스템의 핵심 요소인 모션 제어기는 모션 명령의 전송의 주기성과 각 모터 드라이브 간 동작시점의 편차 최소화 등 실시간 성능 요구사항을 가진다. 이러한 요구사항을 만족시키기 위해 모션 제어기는 전통적으로 하드웨어 중심의 전용기 형태로 구현되어 왔으나 시스템 간 호환성과 확장성의 한계로 소프트웨어 중심의 범용 모션 제어기로 대체되는 추세이다. 한편 최근에는 저비용, 고성능의 범용 임베디드 플랫폼을 이용한 모션 제어기에 대한 관심도 커지고 있다. 본 논문에서는 고정밀 모션 제어 응용을 위해 ARM 기반 범용 임베디드 보드 상에서 Xenomai 기반 임베디드 제어기를 오픈소스 소프트웨어로 구현한 결과를 제시한다. 구현된 임베디드 제어기의 성능 평가를 위해 실제 응용 상황에서 측정 실험을 수행하였으며, 실험 결과 구현된 제어기는 드라이브 3개를 2 ms 제어주기로 동시 구동하는 환경에서도 안정적인 성능을 보임을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. M. Cereia, I. C. Bertolotti, and S. Scanzio, "Performance of a Real-Time EtherCAT Master Under Linux," IEEE Transactions on Industrial Informatics, Vol. 7, No. 4, pp. 679-687, Nov. 2011. https://doi.org/10.1109/TII.2011.2166777
  2. H. Kang, J. Lee, J. Choi, and K. Kim, "Performance Evaluation of Real-Time Linux Kernel Patch for Exynos4210 Processors," KIPS Transactions on Computer and Communication Systems, Vol. 2, No. 7, pp. 277-282, Jul. 2013. (in Korean) https://doi.org/10.3745/KTCCS.2013.2.7.277
  3. I. Kim, S. Park, M. Sung, and T. Kim, "Design and Implementation of a Real-time Motion Controller using Open Source Software," Journal of KIISE : Computer Systems and Theory, Vol. 39, No. 2, pp. 84-95, Apr. 2012.
  4. M. Felser, "Real Time Ethernet: Standardization and implementations," Proc. of the IEEE International Symposium on Industrial Electronics (ISIE), pp. 3766- 3771, Jul. 2010.
  5. D. Jansen, and H. Buttner, "Real-time Ethernet - The EtherCAT solution," Computing & Control Engineering Journal, Vol. 15, No. 1, pp. 16-21, 2004.
  6. M. Sung, I. Kim, and T. Kim, "Toward a Holistic Delay Analysis of EtherCAT Synchronized Control Process," International Journal Computer, Communication & Control (IJCCC), Vol. 8, No. 4, pp. 608-621, Aug. 2013. https://doi.org/10.15837/ijccc.2013.4.384
  7. J. Jasperneite, M. Schumacher, and K. Weber, "Limits of increasing the performance of Industrial Ethernet protocols," Proc. of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 17-24, Sep. 2007.
  8. J. Robert, J.-P. Georges, E. Rondeau, and T. Divoux, "Minimum Cycle Time Analysis of Ethernet-Based Real-Time Protocols," International Journal Computer, Communication & Control (IJCCC), Vol. 7, No. 4, pp. 743-757, Nov. 2012.
  9. M. Sung, and K. Kim, "Implementation and Analysis of a Networked Motor Drive using Real-Time Ethernet," Journal of KIISE : Computing Practices and Letters, Vol. 17, No. 8, pp. 457-462, Aug. 2011. (in Korean)
  10. T. Maruyama, and T. Yamada, "Hardware Acceleration Architecture for EtherCAT Master Controller," Proc. of the IEEE international Workshop on Factory Communication Systems (WFCS), pp. 223-232, May. 2012.
  11. D. Orfanus, R. Indergaard, G. Prytz, and T. Wien, "EtherCAT-based Platform for Distributed Control in High-Performance Industrial Applications," Proc. of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1-8, Sep. 2013.
  12. Xenomai. (2014, Oct. 1). Xenomai: Real-Time Framework for Linux [Online]. Available: http://www.xenomai.org
  13. I. Kim, T. Kim, M. Sung, E. Tisserant, L. Bessard, and C. Choi, "An Open-source Development Environment for Industrial Automation with EtherCAT and PLCopen Motion Control," Proc. of the IEEE International Conference on Emerging Technology and Factory Automation (ETFA), pp. 1-4, Sep. 2013.
  14. IgH. (2014, Oct. 1). IgH EtherCAT master for Linux [Online]. Available: http://etherlab.org/en/ethercat/
  15. P. C. Richardson, W. Xiang, and S. Mohammad, "Performance analysis of a real-time control network test bed in a linux-based system with sporadic message arrivals," IEEE Transactions on Industrial Informatics, Vol. 2, No. 4, pp. 231-241, Nov. 2006. https://doi.org/10.1109/TII.2006.885925