• Title/Summary/Keyword: Motion distance

Search Result 974, Processing Time 0.029 seconds

Difference Edge Acquisition for B-spline Active Contour-Based Face Detection (B-스플라인 능동적 윤곽 기반 얼굴 검출을 위한 차 에지 영상 획득)

  • Kim, Ga-Hyun;Jung, Ho-Gi;Suhr, Jae-Kyu;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.19-27
    • /
    • 2010
  • This paper proposes a method for enhancing detection performance and reducing computational cost when detecting a human face by applying B-spline active contour to the frame difference of consecutive images. Firstly, the method estimates amount of user's motion using kurtosis. If the kurtosis is smaller than a pre-defined threshold, it is considered that the amount of user's motion is insufficient and thus the contour fitting is not applied. Otherwise, the contour fitting is applied by exploiting the fact that the amount of motion is sufficient. Secondly, for the contour fitting, difference edges are detected by combining the distance transformation of the binarized frame difference and the edges of current frame. Lastly, the face is located by assigning the contour fitting process to the detected difference edges. Kurtosis-based motion amount estimation can reduce a computational cost and stabilize the results of the contour fitting. In addition, distance transformation-based difference edge detection can enhance the problems of contour lag and discontinuous difference edges. Experimental results confirm that the proposed method can reduce the face localization error caused by the contour lag and discontinuity of edges, and decrease the computational cost by omitting approximately 39% of the contour fitting.

Multi-camera Calibration Method for Optical Motion Capture System (광학식 모션캡처를 위한 다중 카메라 보정 방법)

  • Shin, Ki-Young;Mun, Joung-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.41-49
    • /
    • 2009
  • In this paper, the multi-camera calibration algorithm for optical motion capture system is proposed. This algorithm performs 1st camera calibration using DLT(Direct linear transformation} method and 3-axis calibration frame with 7 optical markers. And 2nd calibration is performed by waving with a wand of known length(so called wand dance} throughout desired calibration volume. In the 1st camera calibration, it is obtained not only camera parameter but also radial lens distortion parameters. These parameters are used initial solution for optimization in the 2nd camera calibration. In the 2nd camera calibration, the optimization is performed. The objective function is to minimize the difference of distance between real markers and reconstructed markers. For verification of the proposed algorithm, re-projection errors are calculated and the distance among markers in the 3-axis frame and in the wand calculated. And then it compares the proposed algorithm with commercial motion capture system. In the 3D reconstruction error of 3-axis frame, average error presents 1.7042mm(commercial system) and 0.8765mm(proposed algorithm). Average error reduces to 51.4 percent in commercial system. In the distance between markers in the wand, the average error shows 1.8897mm in the commercial system and 2.0183mm in the proposed algorithm.

Acceleration Variation of Surrounding Ground according to distance from Strip-Type Crushed Stone Foundation (쇄석 띠기초와의 거리에 따른 주변지반의 가속도 변화)

  • Son, Su-Won;Son, Tae-Ik;Kim, Soo-Bong;Kim, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.217-223
    • /
    • 2019
  • In this study, the acceleration changes of the surrounding ground when crushed stones were installed in a strip-type were analyzed using the 1-G shaking table test. The ground was constructed from clay, and the foundation was installed using crushed stone of strip-type form. The response acceleration and response spectrum for various input seismic motions were analyzed. The change in acceleration was examined according to the adjacent distance to the strip-type crushed stone foundation. In the Hachinohe seismic motion results, there was no significant decrease in acceleration, but the maximum response acceleration for the two seismic motions was inversely proportional to the distance from the crushed stone foundation. As a result of the response spectrum analysis, the attenuation period in the long period and the short period input wave were different from each other, and the change in response spectrum affected the maximum acceleration value. As the distance from the crushed stone foundation was increased, the attenuation was larger in the period between 0.08 and 0.5 sec in the Hachinohe seismic motion, the attenuation was larger in the period of less than 0.2 seconds in the Northridge seismic motion.

A Study on the Vibration Phenomenon of 6 Bundle Boltless Spacer Damper (6도체 무볼트형 Spacer Damper의 진동현상에 관한 연구)

  • 김영달
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.110-118
    • /
    • 2003
  • Spacer dampers maintain the constant gaps between each conductor in a bundle conductor-transmission line, and are installed at proper intervals to keep a line from all sorts of damages derived from the vibration energy caused by mechanical or electrical external factors. It is most important to embody a technology which considers difficulties of maintenance and repair, and has optimum elements in order to prevent accidents such as destruction by fire or the snapping of a wire by the effect of vibration phenomenon coming from transmission lint In the resent thesis, therefore, the analysis of vibratory characteristics of spacer damper is set up by analytical methods such as the analysis of conductor motion's governing equation, the equation of spacer damper's motion, spacer damper-fastened wire's motion in a span and the numerical analysis of finite difference method. Furthermore, the installation distance between spacer dampers was scrutinized by simulations of various vibration phenomena which change at any time as actual conditions do, and hereafter difference method. Furthermore, the installation distance between spacer dampers was scrutinized by simulations of various vibration phenomena which change at any time as actual conditions do, and hereafter we will be able to analyze all kinds of vibration phenomena coming from a boltless spacer damper with 6 bundle conductor for 765kV transmission line based on new analytical methods.

Development of Omnidirectional Active Marker for Motion Capture System with a Monocular PSD Camera (단안 PSD 카메라를 이용한 모션캡쳐 시스템을 위한 전방향성 능동마커 개발)

  • Seo, Pyeong-Won;Ryu, Young-Kee;Oh, Choon-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.379-381
    • /
    • 2008
  • 본 논문에서는 가정용 비디오 게임에 사용 가능한 고속의 저가형 모션캡쳐, 시스템에 사용되는 전 방향 특성을 갖는 IR 능동 마커의 개발을 목표로 하고 있다. 현재 영화나 게임에서 모션캡쳐를 응용한 시스템 및 컨텐츠들이 많이 선보기고 있으며, 인기를 모으고 있는 추세이다. 이러한 흐름에 맞추어 우리는 이미 저가이면서 속도가 빠른 PSD(Position Sensitive Detector) 센서를 이용만 스테레오 비젼 기반의 PSD 모션캡쳐 시스템(Stereo vision based PSD motion capture system)과 광량 보정 기반의 단일 PSD 모션캡쳐 시스템(Intensity Calibration based single PSD motion capture system) 그리고 일정간격의 두 능동마커 기반의 단안 PSD 모션캡쳐 시스템(Two active markers at fixed distance based single PSD motion capture system)등을 소개한 바 있다. 본 논문에서 제안하는 전방향 특성을 갖는 IR 능동 마커는 일정간격의 두 능동마커 기반의 단안 PSD 모션캡쳐 시스템에 적용하여 보다 정밀한 3차원 좌표 측정을 할 수 있도록 한다. 이를 위해 본 논문에서는 동일 특성을 갖는 마커를 제작하고 평가하여 일정간격의 두 능동마커 기반의 단안 PSD 모션캡쳐 시스템에 적합한 마커의 제작 방법을 제안하였다.

  • PDF

A Feature Tracking Algorithm Using Adaptive Weight Adjustment (적응적 가중치에 의한 특징점 추적 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.68-78
    • /
    • 1999
  • A new algorithm for tracking feature points in an image sequence is presented. Most existing feature tracking algorithms often produce false trajectories, because the matching measures do not precisely reflect motion characteristics. In this paper, three attributes including spatial coordinate, motion direction and motion magnitude are used to calculate the feature point correspondence. The trajectories of feature points are determined by calculation the matching measure, which is defined as the minimum weighted Euclidean distance between two feature points. The weights of the attributes are updated reflecting the motion characteristics, so that the robust tracking of feature points is achieved. The proposed algorithm can find the trajectories correctly which has been shown by experimental results.

  • PDF

Stochastic ground-motion evaluation of the offshore Uljin Earthquake (울진앞바다 지진( '04. 5. 29, M=5.2)의 추계학적 지진동 평가)

  • Yun, Kwan-Hee;Park, Dong-Hee;Choi, Weon-Hack;Chang, Chun-Jung
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.18-25
    • /
    • 2005
  • Stochastic ground-motion method is adopted to simulate horizontal PGA values for the offshore Uljin earthquake recorded at nationwide seismic stations. For this purpose, the Fourier spectra are calculated at every stations based on comprehensive results of wave propagation and site effect which were previously revealed through inversion process applied to large accumulated spectral D/B. In addition, the apparent source spectrum of the offshore Uljin earthquake is estimated by removing the path and site response from the observed spectra. The distance dependent time-duration model is revised by iteratively fitting the PGA values generated by using the raw spectra data to the observed PGA data. The stochastic ground-motion method predicts the observed PGA values within a error of ${\sigma}_{log10}=0.1$. Transfer functions of a site relative to another site are estimated based on the error residual of the inversion results and used to convert PGA values at multiple stations to expected PGA values at a reference station of TJN. The converted PGA values can be used as basic data to evaluate the ground-motion attenuation relations developed for seismic hazard analysis that concerns the large damaging earthquakes.

  • PDF

Damage Estimation Based on Spatial Variability of Seismic Parameters Using GIS Kriging (GIS Kriging을 이용하여 공간적으로 분포하는 지진매개변수의 분석과 손상 평가)

  • Jeon Sang-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.33-44
    • /
    • 2004
  • This paper is focused on the spatial variability of measured strong motion data during earthquake and its relationship with the performance of water distribution pipelines and residential buildings. Analyses of strong motion and the correlations of peak ground velocity (PGV) and pipeline and building damage were conducted with a very large geographical information system (GIS) database including the relationship of time and earthquake intensity and the measured location, and Kriging spatial statistics. Kriging was used to develop regressions of pipeline repair rate (RR) and residential building damage ratio (DR) associated with $90\%$ confidence peak ground velocity (PGV). Such regressions using Kriging provide an explicit means of characterizing the uncertainty embodied in the strong motion data compared with other spacial statistics such as inverse distance method.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

Interframe Coding for 3-D Medical Images Using an Adaptive Mode Selection Technique in Wavelet Transform Domain (웨이블릿 변환 영역에서의 적응적 모드 선택 기법을 이용한 3차원 의료 영상을 위한 interframe 부호화)

  • 조현덕;나종범
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.265-274
    • /
    • 1999
  • In this paper, we propose a novel interframe coding algorithm especially appropriate for 3-D medical images. The proposed algorithm is based on a video coding algorithm using motion estimation/ compensation and transform coding. In the algorithm, warping is adopted lor motion compensation (MC). Then, by using adaptive mode selection, a motion compensated residual image and original image are mixed up in the wavelet transform domain for improvement in coding performance. The mixed image is then compressed by the zerotree coding method. We prove that the adaptive mode selection technique in the wavelet transform domain is very useful lor 3-D medical image coding. Simulation results show that the proposed scheme provides good performance regardless of inter-slice distance and is prospective for 3-D medical image compression.

  • PDF