A Feature Tracking Algorithm Using Adaptive Weight Adjustment

적응적 가중치에 의한 특징점 추적 알고리즘

  • Published : 1999.11.01

Abstract

A new algorithm for tracking feature points in an image sequence is presented. Most existing feature tracking algorithms often produce false trajectories, because the matching measures do not precisely reflect motion characteristics. In this paper, three attributes including spatial coordinate, motion direction and motion magnitude are used to calculate the feature point correspondence. The trajectories of feature points are determined by calculation the matching measure, which is defined as the minimum weighted Euclidean distance between two feature points. The weights of the attributes are updated reflecting the motion characteristics, so that the robust tracking of feature points is achieved. The proposed algorithm can find the trajectories correctly which has been shown by experimental results.

본 논문에서는 동영상에서 특징점의 궤적을 추적하기 위한 알고리즘을 제안한다. 기존의 방법에서 사용된 대부분의 정합의 척도(matching measure)는 동영상의 움직임 특성을 정확히 반영하지 못하여 잘못된 궤적을 나타내는 경우가 있다. 본 논문에서는 특징범의 공간좌표, 이동방향과 이동거리 등 3가지 속성을 정합에 사용하는데 이들 속성에 대하여 가중치(weight)가 부여된 Euclidean 거리를 정합의 척도로 사용한다. 이때 3가지 속성에 대한 가중치를 움직임의 특성에 따라 적응적으로 변화시켜 줌으로써 강건하게 특징점을 추적할 수 있도록 한다. 제안하는 알고리즘은 매 프레임마다 특징점의 운동특성을 정확히 반영함으로써 기존의 방법에 비해 정확한 궤적을 찾을 수 있으며 이는 다양한 동영상에 대한 실험을 통해 확인되었다.

Keywords