• Title/Summary/Keyword: Motion analysis system

Search Result 2,509, Processing Time 0.041 seconds

The Improvement of Target Motion Analysis(TMA) for Submarine with Data Fusion (정보융합 기법을 활용한 잠수함 표적기동분석 성능향상 연구)

  • Lim, Young-Taek;Ko, Soon-Ju;Song, Taek-Lyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.697-703
    • /
    • 2009
  • Target Motion Analysis(TMA) means to detect target position, velocity and course for using passive sonar system with bearing-only measurement. In this paper, we apply the TMA algorithm for a submarine with Multi-Sensor Data Fusion(MSDF) and we will decide the best TMA algorithm for a submarine by a series of computer simulation runs.

Target Motion Analysis for a Passive Sonar System with Observability Enhancing (가관측성 향상을 통한 수동소나체계의 표적기동 분석)

  • 한태곤;송택렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 1999
  • As a part of target motion analysis(TMA) with highly noisy bearings-only measurements from a passive sonar system, a nonlinear batch estimator is proposed to provide the initial estimates to a sequential estimator called the modified gain extended Kalman filter(MGEKF). Based on the system observability analysis of passive target tracking, a practical and effective method is suggested to determine the observer maneuvers for improved TMA performance through system observability enhancing. Also suggested is a method to determine observer location for enhanced system observability at the initial phase of TMA from various engagement boundaries which represent the relationship between observer-target relative geometrical data and system observability. The proposed TMA methods are tested by a series of computer simulation runs.

  • PDF

Development of Posture Evaluation System through Digital Recognition Method (디지털 영상인식 방법을 통한 자세평가 및 운동가동범위 측정시스템 개발)

  • Moon, Young-Jin;Lee, Soon-Ho;Back, Jin-Ho;Lee, Jong-Gak;Lee, Gun-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.49-65
    • /
    • 2004
  • The purpose of this study is development of posture evaluation and Range of Motion(ROM) system by using digital vision analysis method. The results of this study are as follows. First, Scoliosis evaluation through this research measurement system represent 3mm error in 7 cervical point and deepest lumbar point, 0.7mm error in other point. This mean this research measurement system have a reliability for scoliosis evaluation. Second, for spine line evaluation on high fat subject, we need reconstrection spine line after measurement for fat thickness in 7 cervical point and deepest lumbar point. Third, In pedioscope error test, it present 0.01848cm in X axis and 0.01757cm in Y axis. This results mean pedioscope have a reliability foot evaluation. Forth, Posture evaluation and Range of Motion measurement system by using digital vision analysis method can fast measure in range of motion and foot evaluation and posture. therefore we can expect this system application in young people posture clinic center and hospital and so on.

An Analysis of Weight-lifting Motion Using an Expert System and CAD Routine (Expert System과 CAD를 이용한 역도경기 동작의 분석.평가방안)

  • Lee, Myeon-U
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 1986
  • This study is concerned on computerized analysis of COG, torques and EMG amplitudes in weight-lifting motion. The results show that; (1) torques on major joints show a rather consistent relationship with respect to the sequence of four distinct motions in weight-lifting, (2) analysis of EMG amplitudes is a sensitive measure of both athlete's skill and his potential capability, and (3) range of COG variations can be used as indicator of motion stability, existence of undesirable posture, and target muscle for intensive training. A computerized routine, which includes analyses on COG, EMG and torque, is a scientific tool for coaching athletes. In addition, an Expert System which includes CAD routine was developed in order to promote better understanding for athletes and coaches.

  • PDF

Development and Analysis of Korea Open Source Motion System based on Real-Time Ethernet (실시간 이더넷 기반의 한국형 오픈소스 모션 시스템 개발 및 분석)

  • Lim, Sun;Lee, Seung-Yong;Kim, Ji-Hyun;Jung, Il-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.186-193
    • /
    • 2017
  • KOSMOS is Korea Open Source MOtion System which is developed based on general purpose hardware and open source software. It is aiming at IEC 61131-3 standard. Real-time ethernet has several advantages for motion control system and distributed control system. So, considering this advantages, KOSMOS has the network interface made up of Real-time ethernet, EtherCAT. In this paper, we explain the KOSMOS platform, the performance for real-time task and show the real case applying KOSMOS platform in manipulator control system.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

Failure Probability of Nonlinear SDOF System Subject to Scaled and Spectrum Matched Input Ground Motion Models (배율조정 및 스펙트럼 맞춤 입력지반운동 모델에 대한 비선형 단자유도 시스템의 파손확률)

  • Kim, Dong-Seok;Koh, Hyun-Moo;Choi, Chang-Yeol;Park, Won-Suk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • In probabilistic seismic analysis of nonlinear structural system, dynamic analysis is performed to obtain the distribution of the response estimate using input ground motion time histories which correspond to a given seismic hazard level. This study investigates the differences in the distribution of the responses and the failure probability according to input ground motion models. Two types of input ground motion models are considered: real earthquake records scaled to specified intensity level and artificial input ground motion fitted to design response spectrum. Simulation results fir a nonlinear SDOF system demonstrate that the spectrum matched input ground motion produces larger failure probability than those of scaled input ground motion due to biased responses. Such tendency is more remarkable in the site of soft soil conditions. Analysis results show that such difference of failure probability is due to the conservative estimation of design response spectrum in the range of long period of ground motion.

An Agent-based System for Character Motion Animation Control (캐릭터 동작 애니메이션 제어를 위한 에이전트 시스템)

  • Kim, Ki-Hyun;Kim, Sang-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.5
    • /
    • pp.467-474
    • /
    • 2001
  • When user wants to animate more than one character, some unexpected motion animation like a collision between characters may occur. Therefore, this problem must be resolved using a proper control mechanism. Therefore, this problem must be resolved using a proper control mechanism. This paper proposes an agent-based system that controls the motion animation of the character for representing animation scenario reflecting user\`s intention. This system provides a method that coordinates a type of motion and avoids collision between characters according to the moving path of a character in three-dimensional space. Agent communicates with others for motion synchronization. Agent is extended into several intelligent agents that coordinate character\`s motion. Agent system enables not only an intended motion animation, but also the scheduling of motion to an entire character animation. It designs automata model using Petri-net analysis tool for the agent\`s interaction as a method that passes the agent\`s information and infers the current state of agents. We implement this agent system to control the motion of character using agent technology and show an example of controlling the motion of human character model to prove the possiblity of motion control.

  • PDF

CAD System Development for Geometric Design and Motion Analysis of Tangential Cam (접선 캠의 형상설계 및 운동해석을 위한 CAD시스템 개발)

  • 조성철;송정섭
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.42-46
    • /
    • 1995
  • To purpose of this study is to model design and motion analysis of tangential cam mechanism using personal computer system. The CAD(Computer Aided Design) system used in this study was constructed with CPU(Central Processing Unit) 80486, RAM(Random Access Memory) 8M, CGA graphic card. By using developed program for tangential cam mechanism, we designed tangential cam models and analysed displacement, velocity, acceleration of follower.

  • PDF

Real-Time Analysis of Occupant Motion for Vehicle Simulator (차량 시뮬레이터 접목을 위한 실시간 인체거동 해석기법)

  • Oh, Kwangseok;Son, Kwon;Choi, Kyunghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.969-975
    • /
    • 2002
  • Visual effects are important cues for providing occupants with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant's posture, therefore, the total human body motion must be considered in a graphic simulator. A real-time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and lane-change for acquiring the accelerations of chassis of the vehicle model. A hybrid III 50%ile adult male dummy model was selected and modeled in an ellipsoid model. Multibody system analysis software, MADYMO, was used in the motion analysis of an occupant model in the seated position under the acceleration field of the vehicle model. Acceleration data of the head were collected as inputs to the viewpoint movement. Based on these data, a back-propagation neural network was composed to perform the real-time analysis of occupant motions under specified driving conditions and validated output of the composed neural network with MADYMO result in arbitrary driving scenario.