• Title/Summary/Keyword: Motion Prediction

Search Result 878, Processing Time 0.025 seconds

Fishing Boat Rolling Movement of Time Series Prediction based on Deep Network Model (심층 네트워크 모델에 기반한 어선 횡동요 시계열 예측)

  • Donggyun Kim;Nam-Kyun Im
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.376-385
    • /
    • 2023
  • Fishing boat capsizing accidents account for more than half of all capsize accidents. These can occur for a variety of reasons, including inexperienced operation, bad weather, and poor maintenance. Due to the size and influence of the industry, technological complexity, and regional diversity, fishing ships are relatively under-researched compared to commercial ships. This study aimed to predict the rolling motion time series of fishing boats using an image-based deep learning model. Image-based deep learning can achieve high performance by learning various patterns in a time series. Three image-based deep learning models were used for this purpose: Xception, ResNet50, and CRNN. Xception and ResNet50 are composed of 177 and 184 layers, respectively, while CRNN is composed of 22 relatively thin layers. The experimental results showed that the Xception deep learning model recorded the lowest Symmetric mean absolute percentage error(sMAPE) of 0.04291 and Root Mean Squared Error(RMSE) of 0.0198. ResNet50 and CRNN recorded an RMSE of 0.0217 and 0.022, respectively. This confirms that the models with relatively deeper layers had higher accuracy.

The Value of Computed Tomography Scan in Three-dimensional Planning and Intraoperative Navigation in Primary Total Hip Arthroplasty

  • Fabio Mancino;Andreas Fontalis;Ahmed Magan;Ricci Plastow;Fares S. Haddad
    • Hip & pelvis
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Total hip arthroplasty (THA) is a frequently performed procedure; the objective is restoration of native hip biomechanics and achieving functional range of motion (ROM) through precise positioning of the prosthetic components. Advanced three-dimensional (3D) imaging and computed tomography (CT)-based navigation are valuable tools in both the preoperative planning and intraoperative execution. The aim of this study is to provide a thorough overview on the applications of CT scans in both the preoperative and intraoperative settings of primary THA. Preoperative planning using CT-based 3D imaging enables greater accuracy in prediction of implant sizes, leading to enhancement of surgical workflow with optimization of implant inventory. Surgeons can perform a more thorough assessment of posterior and anterior acetabular wall coverage, acetabular osteophytes, anatomical landmarks, and thus achieve more functional implant positioning. Intraoperative CT-based navigation can facilitate precise execution of the preoperative plan, to attain optimal positioning of the prosthetic components to avoid impingement. Medial reaming can be minimized preserving native bone stock, which can enable restoration of femoral, acetabular, and combined offsets. In addition, it is associated with greater accuracy in leg length adjustment, a critical factor in patients' postoperative satisfaction. Despite the higher costs and radiation exposure, which currently limits its widespread adoption, it offers many benefits, and the increasing interest in robotic surgery has facilitated its integration into routine practice. Conducting additional research on ultra-low-dose CT scans and examining the potential for translation of 3D imaging into improved clinical outcomes will be necessary to warrant its expanded application.

A Study on the Method of Minimizing the Bit-Rate Overhead of H.264 Video when Encrypting the Region of Interest (관심영역 암호화 시 발생하는 H.264 영상의 비트레이트 오버헤드 최소화 방법 연구)

  • Son, Dongyeol;Kim, Jimin;Ji, Cheongmin;Kim, Kangseok;Kim, Kihyung;Hong, Manpyo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.311-326
    • /
    • 2018
  • This paper has experimented using News sample video with QCIF ($176{\times}144$) resolution in JM v10.2 code of H.264/AVC-MPEG. The region of interest (ROI) to be encrypted occurred the drift by unnecessarily referring to each frame continuously in accordance with the characteristics of the motion prediction and compensation of the H.264 standard. In order to mitigate the drift, the latest related research method of re-inserting encrypted I-picture into a certain period leads to an increase in the amount of additional computation that becomes the factor increasing the bit-rate overhead of the entire video. Therefore, the reference search range of the block and the frame in the ROI to be encrypted is restricted in the motion prediction and compensation for each frame, and the reference search range in the non-ROI not to be encrypted is not restricted to maintain the normal encoding efficiency. In this way, after encoding the video with restricted reference search range, this article proposes a method of RC4 bit-stream encryption for the ROI such as the face to be able to identify in order to protect personal information in the video. Also, it is compared and analyzed the experimental results after implementing the unencrypted original video, the latest related research method, and the proposed method in the condition of the same environment. In contrast to the latest related research method, the bit-rate overhead of the proposed method is 2.35% higher than that of the original video and 14.93% lower than that of the latest related method, while mitigating temporal drift through the proposed method. These improved results have verified by experiments of this study.

Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number (저 레이놀즈 수에서 실린더 경계 유속조건에 따른 흐름 특성)

  • Song, Chang Geun;Seo, Il Won;Kim, Tae Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2267-2275
    • /
    • 2013
  • Existing conventional model for analysis of shallow water flow just assumed the internal boundary condition as free-slip, which resulted in the wrong prediction about the velocity, vorticity, water level, shear stress distribution, and time variation of drag and lift force around a structure. In this study, a finite element model that can predict flow characteristics around the structure accurately was developed and internal boundary conditions were generalized as partial slip condition using slip length concept. Laminar flow characteristics behind circular cylinder were analyzed by varying the internal boundary conditions. The simulation results of (1) time variations of longitudinal and transverse velocities, and vorticity; (2) wake length; (3) vortex shedding phenomena by slip length; (4) and mass conservation showed that the vortex shedding had never observed and laminar flow like creeping motion was occurred under free-slip condition. Assignment of partial slip condition changed the velocity distribution on the cylinder surface and influenced the magnitude of the shear stress and the occurrence of vorticity so that the period of vortex shedding was reduced compared with the case of no slip condition. The maximum mass conservation error occurred in the case of no slip condition, which had the value of 0.73%, and there was 0.21 % reduction in the maximum mass conservation error by changing the internal boundary condition from no slip to partial slip condition.

Site Classification for Incheon According to Site-Specific Seismic Response Parameters by Estimating Geotechnical Spatial Information Based on GIS (GIS 기반 지반공간정보 추정을 통한 부지고유 지진응답 매개변수 기반 인천 지역의 부지분류)

  • SUN, Chang-Guk;KIM, Han-Saem
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.17-35
    • /
    • 2016
  • Earthquake-induced disasters are often more severe in locations with soft soils than firm soils or rocks due to differences in ground motion amplification. On a regional scale, such differences can be estimated by spatially predicting subsurface soil thickness over the entire target area. In general, soil deposits are generally deeper in coastal or riverside areas than in inland regions. In this study, a coastal metropolitan area, Incheon, was selected to assess site effects and provide information on seismic hazards. Spatial prediction of geotechnical layers was performed for the entire study area within the GIS framework. Approximately 7,000 existing borehole drilling data in the Incheon area were gathered and archived into the GIS Database (DB). In addition, surface geotechnical data were acquired from a walkover survey. Based on the built geotechnical DB, spatial zoning maps of site-specific seismic response parameters were created and presented for use in a regional seismic strategy. Site response parameters were performed to determine site coefficients for seismic design over the entire target area and compared with each other. Site classifications and subsequent seismic zoning were assigned based on site coefficients. From this seismic zonation case study in Incheon, we verified that geotechnical GIS-DB can create spatial zoning maps of site-specific seismic response parameters that are useful for seismic hazard mitigation particularly in coastal metropolitan areas.

Forecasting the Precipitation of the Next Day Using Deep Learning (딥러닝 기법을 이용한 내일강수 예측)

  • Ha, Ji-Hun;Lee, Yong Hee;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • For accurate precipitation forecasts the choice of weather factors and prediction method is very important. Recently, machine learning has been widely used for forecasting precipitation, and artificial neural network, one of machine learning techniques, showed good performance. In this paper, we suggest a new method for forecasting precipitation using DBN, one of deep learning techniques. DBN has an advantage that initial weights are set by unsupervised learning, so this compensates for the defects of artificial neural networks. We used past precipitation, temperature, and the parameters of the sun and moon's motion as features for forecasting precipitation. The dataset consists of observation data which had been measured for 40 years from AWS in Seoul. Experiments were based on 8-fold cross validation. As a result of estimation, we got probabilities of test dataset, so threshold was used for the decision of precipitation. CSI and Bias were used for indicating the precision of precipitation. Our experimental results showed that DBN performed better than MLP.

Time-synchronized measurement and cyclic analysis of ultrasound imaging from blood with blood pressure in the mock pulsatile blood circulation system (박동 혈액 순환 모의 시스템에서 시간 동기화된 혈압 및 혈액의 초음파 영상 측정 및 주기적 분석)

  • Min, Soohong;Jin, Changzhu;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.361-369
    • /
    • 2017
  • Hemodynamic information in the carotid artery bifurcation is very important for understanding the development and progression mechanisms of cerebrovascular disease and for its early diagnosis and prediction of the progress. In this paper, we constructed a mock pulsatile blood circulation system using an anthropomorphic elastic vessel of the carotid artery bifurcation and ex vivo pig blood to acquire ultrasound images from blood and vessels synchronized with internal pressure while controlling the blood flow. Echogenicity, blood flow velocity, and blood vessel wall motion from the ultrasound images, and internal blood pressure were extracted over a cycle averaged from five cycles when the pulsatile pump rates are 20 r/min, 40 r/min, and 60 r/min. As a result, respectively, the peak systolic blood flow velocities were 20 cm/s, 25 cm/s, and 40 cm/s, the blood pressure differences were 30 mmHg, 70 mmHg, and 85 mmHg, the arterial walls were expanded to 0.05 mm, 0.15 mm, and 0.25 mm. Time-delayed cyclic variation of echogenicity compared to blood flow and pressure was observed, but the variation was minimal at 20 r/min. Time-synchronized cyclic variations of these parameters are important information for accurate input parameters and validation of the computational hemodynamic experiments which will provide useful information for the development and progress mechanisms of carotid artery stenosis.

Fast Mode Decision using Block Size Activity for H.264/AVC (블록 크기 활동도를 이용한 H.264/AVC 부호화 고속 모드 결정)

  • Jung, Bong-Soo;Jeon, Byeung-Woo;Choi, Kwang-Pyo;Oh, Yun-Je
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.1-11
    • /
    • 2007
  • H.264/AVC uses variable block sizes to achieve significant coding gain. It has 7 different coding modes having different motion compensation block sizes in Inter slice, and 2 different intra prediction modes in Intra slice. This fine-tuned new coding feature has achieved far more significant coding gain compared with previous video coding standards. However, extremely high computational complexity is required when rate-distortion optimization (RDO) algorithm is used. This computational complexity is a major problem in implementing real-time H.264/AVC encoder on computationally constrained devices. Therefore, there is a clear need for complexity reduction algorithm of H.264/AVC such as fast mode decision. In this paper, we propose a fast mode decision with early $P8\times8$ mode rejection based on block size activity using large block history map (LBHM). Simulation results show that without any meaningful degradation, the proposed method reduces whole encoding time on average by 53%. Also the hybrid usage of the proposed method and the early SKIP mode decision in H.264/AVC reference model reduces whole encoding time by 63% on average.

Transform domain Wyner-Ziv Coding based on the frequency-adaptive channel noise modeling (주파수 적응 채널 잡음 모델링에 기반한 변환영역 Wyner-Ziv 부호화 방법)

  • Kim, Byung-Hee;Ko, Bong-Hyuck;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.144-153
    • /
    • 2009
  • Recently, as the necessity of a light-weighted video encoding technique has been rising for applications such as UCC(User Created Contents) or Multiview Video, Distributed Video Coding(DVC) where a decoder, not an encoder, performs the motion estimation/compensation taking most of computational complexity has been vigorously investigated. Wyner-Ziv coding reconstructs an image by eliminating the noise on side information which is decoder-side prediction of original image using channel code. Generally the side information of Wyner-Ziv coding is generated by using frame interpolation between key frames. The channel code such as Turbo code or LDPC code which shows a performance close to the Shannon's limit is employed. The noise model of Wyner-Ziv coding for channel decoding is called Virtual Channel Noise and is generally modeled by Laplacian or Gaussian distribution. In this paper, we propose a Wyner-Ziv coding method based on the frequency-adaptive channel noise modeling in transform domain. The experimental results with various sequences prove that the proposed method makes the channel noise model more accurate compared to the conventional scheme, resulting in improvement of the rate-distortion performance by up to 0.52dB.

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.