DOI QR코드

DOI QR Code

Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number

저 레이놀즈 수에서 실린더 경계 유속조건에 따른 흐름 특성

  • Received : 2013.07.09
  • Accepted : 2013.09.05
  • Published : 2013.11.30

Abstract

Existing conventional model for analysis of shallow water flow just assumed the internal boundary condition as free-slip, which resulted in the wrong prediction about the velocity, vorticity, water level, shear stress distribution, and time variation of drag and lift force around a structure. In this study, a finite element model that can predict flow characteristics around the structure accurately was developed and internal boundary conditions were generalized as partial slip condition using slip length concept. Laminar flow characteristics behind circular cylinder were analyzed by varying the internal boundary conditions. The simulation results of (1) time variations of longitudinal and transverse velocities, and vorticity; (2) wake length; (3) vortex shedding phenomena by slip length; (4) and mass conservation showed that the vortex shedding had never observed and laminar flow like creeping motion was occurred under free-slip condition. Assignment of partial slip condition changed the velocity distribution on the cylinder surface and influenced the magnitude of the shear stress and the occurrence of vorticity so that the period of vortex shedding was reduced compared with the case of no slip condition. The maximum mass conservation error occurred in the case of no slip condition, which had the value of 0.73%, and there was 0.21 % reduction in the maximum mass conservation error by changing the internal boundary condition from no slip to partial slip condition.

기존의 천수흐름 해석 상용모형에서는 내부 경계조건을 단순히 완전활동조건으로 가정하여 유체의 흐름을 해석함으로써 구조물 주위에서의 유속, 와도, 수위, 전단력의 분포, 항력 및 양력의 시간에 따른 변화 등을 올바르게 해석하지 못하였다. 본 연구에서는 구조물 주위에서의 흐름특성을 정확하게 예측할 수 있는 유한요소모형을 개발하고, 구조물에서의 경계조건을 활동길이를 이용한 부분활동조건으로 묘사하여 내부경계조건에 따른 원형 실린더 후면에서의 층류 흐름특성을 분석하였다. 종횡방향 유속 및 와도의 시간에 따른 변화, 후류길이, 활동길이에 따른 와류열의 변화와 질량보존율을 비교한 결과 완전활동조건을 부여한 경우에는 와류열이 전혀 형성되지 않고 완전한 층류흐름이 발생하였다. 부분활동조건을 입력한 경우 실린더 표면에서의 유속분포가 변화되어 전단력의 크기와 와도의 발생에 영향을 미치므로 무활조건을 부여한 경우에 비해 와류열의 발생 주기가 짧아졌다. 최대 질량보존 오차는 무활조건을 적용한 경우 0.73%로 나타났으며, 무활조건에 비해 부분활동조건을 부여한 경우의 오차율이 최대 0.21% 감소하였다.

Keywords

References

  1. Beaudan, P. and Moin, P. (1994). Numerical experiments on the flow past a circular cylinder at subcritical Reynolds number, Report TF-62, Stanford University.
  2. Behr, M., Hastreiter, D., Mittal, S. and Tezduyar, T. E. (1995). "Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries." Computer Methods in Applied Mechanics and Engineering, Vol. 123, pp. 309-316. https://doi.org/10.1016/0045-7825(94)00736-7
  3. Behr, M., Liou, J., Shih, R. and Tezduyar, T. E. (1991). "Vorticitystream function formulation of unsteady incompressible flow past a cylinder: sensitivity of the computed flow field to the location of the outflow boundary." International Journal for Numerical Methods in Fluids, Vol. 12, pp. 323-342. https://doi.org/10.1002/fld.1650120403
  4. Braza, M. (1981). Simulation numerique du decollement instationnaire externe par une formulation vitesse-pression: Application a l'ecoulement autour d'un Cylindre, These de Docteur-Ingenieur, Institut National Polytechnique de Toulouse, France.
  5. Chan, F. C., Ghidaoui, M. S. and Kolyshkin, A. A. (2006). "Can the dynamics of shallow wakes be reproduced from a single timeaveraged profile?" Physics of Fluids, 18, 048105. https://doi.org/10.1063/1.2194965
  6. Daniello, R. J., Waterhouse, N. E. and Rothstein, J. P. (2009). "Drag reduction in turbulent flows over superhydrophobic surfaces." Physic of Fluids, 21, 085103. https://doi.org/10.1063/1.3207885
  7. Dennis, S. C. R. and Chang, G. (1970). "Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100." Journal of Fluid Mechanics, Vol. 42, pp. 471-489. https://doi.org/10.1017/S0022112070001428
  8. Engelman, M. S. and Sani, R. L. (1982). "The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow." International Journal for Numerical Methods in Fluid, Vol. 2, pp. 225-238. https://doi.org/10.1002/fld.1650020302
  9. Ha Minh H. (1979). Application de la methode implicite des directions alternees (ADI) a la resolution des equations de Navier-Stokes autour d'un cercle, Report M3-25, Institut de M'ecanique des Fluides de Toulouse.
  10. Hamielec, A. and Raal, J. (1969). "Numerical studies of viscous flow around circular cylinders." Physics of Fluids, Vol. 12, pp. 11-17. https://doi.org/10.1063/1.1692253
  11. Hron, J., Roux, C. L., Málek, J. and Rajagopal, K. R. (2008). "Flows of incompressible fluids subject to Navier's slip on the boundary." Computers and Mathematics with Applications, Vol. 56, pp. 2128-2143. https://doi.org/10.1016/j.camwa.2008.03.058
  12. Liang, Q., Zang, J., Borthwick, A. G. L. and Taylor, P. H. (2007). "Shallow flow simulation on dynamically adaptive cut cell quadtree grids." International Journal for Numerical Methods in Fluids, Vol. 53, pp. 1777-1799. https://doi.org/10.1002/fld.1363
  13. Liang, S. J., Tang, J. H. and Wu, M. S. (2008). "Solution of shallowwater equations using least-squares finite-element method." Acta Mechanica Sinica, Vol. 24, pp. 523-532. https://doi.org/10.1007/s10409-008-0151-4
  14. Lienhard, J. H. (1966). Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders, Bulletin 300, Washington State University.
  15. Liu, H., Zhou, G. J. and Burrows, R. (2009). "Lattice Boltzmann model for shallow water flows in curved and meandering channels." International Journal of Computational Fluid Dynamics, Vol. 23, No. 3, pp. 209-220. https://doi.org/10.1080/10618560902754924
  16. Martinez, G. (1978). Caracteristiques dynamiques et thermiques de l'ecoulement autour d'un cylinder circulaire a nombre de Reynolds modere, These de Docteur-Ingenieur, Institute National Polytechnique de Toulouse, France.
  17. Negretti, M. E. (2003). Analysis of the wake behind a circular cylinder in shallow water flow, Master-Thesis, Trento University, Italy.
  18. Niavarani, A. and Priezjev, N. V. (2009). "The effective slip length and vortex formation in laminar flow over a rough surface." Physic of Fluids, 21, 52105. https://doi.org/10.1063/1.3121305
  19. Niavarani, A. and Priezjev, N. V. (2010). "Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids." Physical Review E, 81, 011606. https://doi.org/10.1103/PhysRevE.81.011606
  20. Parvazinia, M., Nassehi, V., Wakeman, R. J. and Ghoreishy, M. H. R. (2006). "Finite element modelling of flow through a porous medium between two parallel plates using the Brinkman equation." Transport in Porous Media, Vol. 63, pp. 71-90. https://doi.org/10.1007/s11242-005-2721-2
  21. Persillon, H. P. and Braza, M. (1998). "Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation." Journal of Fluid Mechanics, Vol. 365, pp. 23-88. https://doi.org/10.1017/S0022112098001116
  22. Pinder, G. F. and Gray, W. G. (1977). Finite element simulation in surface and subsurface hydrology, ACADEMIC PRESS, pp. 275-283.
  23. Seo, I. W. and Song, C. G. (2010) "Development of 2D Finite Element Model for the Analysis of Shallow Water Flow." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 2B, pp. 199-209 (in Korean).
  24. Seo, I. W. and Song, C. G. (2012). "Numerical simulation of laminar flow past a circular cylinder with slip conditions." International Journal for Numerical Methods in Fluids, Vol. 68, pp. 1538-1560. https://doi.org/10.1002/fld.2542
  25. Son, J. S. and Hanratty, T. J. (1969). "Numerical solution for the flow around a circular cylinder at Reynolds numbers of 40, 200 and 500." Journal of Fluid Mechanics, Vol. 35, pp. 369-386. https://doi.org/10.1017/S0022112069001169
  26. Song, C. G. and Seo, I. W. (2012) "Numerical Simulation of Convection-dominated Flow Using SU/PG Scheme." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 3B, pp. 175-183 (in Korean).
  27. Ta Phuoc Loc. (1975). "Etude numerique de l'ecoulement d'un fluide visqueux incompressible autour d'un cylindre fixeou en rotation, Effet Magnus." Journal of Mechanics, Vol. 14, pp. 109-134.
  28. Tezduyar, T. E. and Shih, R. (1991). "Numerical experiments on downstream boundary of flow past cylinder." Journal of Engineering Mechanics, Vol. 117, pp. 854-871. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:4(854)
  29. Thoman, D. C. and Szewczyk, A. A. (1969). "Time-dependent viscous flow over a circular cylinder." Physics of Fluids, Vol. 12(II), pp. 76-86.
  30. Tophoj, L., Moller, S. and Brons, S. (2006). "Streamline patterns and their bifurcations near a wall with Navier slip boundary conditions." Physic of Fluids, 18, 083102. https://doi.org/10.1063/1.2337660
  31. Tuann, S. Y. and Olson, M. (1978). "Numerical studies of the flow around a circular cylinder by a finite-element method." Computers and Fluids, Vol. 6, pp. 219-240. https://doi.org/10.1016/0045-7930(78)90015-4
  32. Yulistiyanto, B., Zech, Y. and Graf, W. H. (1998). "Flow around a cylinder: Shallow-water modeling with diffusion-dispersion." Journal of Hydraulic Engineering, Vol. 124, No. 4, pp 419-429. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:4(419)
  33. Zhou, J. G. (2002). "A lattice Boltzmann model for the shallow water equations." Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 3527-3539. https://doi.org/10.1016/S0045-7825(02)00291-8
  34. Zienkiewicz, O. Z. and Heinrich, J. C. (1979). "A unified treatment of steady-state shallow water and two-dimensional Navier-Stokes equations-finite element penalty function approach." Computer Methods in Applied Mechanics and Engineering, Vol. 17-18, Part 3, pp. 673-698. https://doi.org/10.1016/0045-7825(79)90050-1