• Title/Summary/Keyword: Motion Comparison

Search Result 1,227, Processing Time 0.032 seconds

The Comparison of Motion Correction Methods in Myocardial Perfusion SPECT (심근관류 SPECT에서 움직임 보정 방법들의 비교)

  • Park, Jang-Won;Nam, Ki-Pyo;Lee, Hoon-Dong;Kim, Sung-Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.28-32
    • /
    • 2014
  • Purpose Patient motion during myocardial perfusion SPECT can produce images that show visual artifacts and perfusion defects. This artifacts and defects remain a significant source of unsatisfactory myocardial perfusion SPECT. Motion correction has been developed as a way to correct and detect the patient motion for reducing artifacts and defects, and each motion correction uses different algorithm. We corrected simulated motion patterns with several motion correction methods and compared those images. Materials and Methods Phantom study was performed. The anthropomorphic torso phantom was made with equal counts from patient's body and simulated defect was added in myocardium phantom for to observe the change in defect. Vertical motion was intentionally generated by moving phantom downward in a returning pattern and in a non-returning pattern throughout the acquisition. In addition, Lateral motion was generated by moving phantom upward in a returning pattern and in a non-returning pattern. The simulated motion patterns were detected and corrected similarly to no-motion pattern image and QPS score, after Motion Detection and Correction Method (MDC), stasis, Hopkins method were applied. Results In phantom study, Changes of perfusion defect were shown in the anterior wall by the simulated phantom motions, and inferior wall's defect was found in some situations. The changes derived from motion were corrected by motion correction methods, but Hopkins and Stasis method showed visual artifact, and this visual artifact did not affect to perfusion score. Conclusion It was confirmed that motion correction method is possible to reduce the motion artifact and artifactual perfusion defect, through the apply on the phantom tests. Motion Detection and Correction Method (MDC) performed better than other method with polar map image and perfusion score result.

  • PDF

A Fast Motion Vector Search in Integer Pixel Unit for Variable Blocks Siz (가변 크기 블록에서 정수단위 화소 움직임 벡터의 빠른 검색)

  • 이융기;이영렬
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.388-396
    • /
    • 2003
  • In this paper, a fast motion search algorithm that performs motion search for variable blocks in integer pixel unit is proposed. The proposed method is based on the successive elimination algorithm (SEA) using sum norms to find the best estimate of motion vector and obtains the best estimate of the motion vectors of blocks, including 16${\times}$8, 8${\times}$16, and 8${\times}$8, by searching eight pixels around the best motion vector of 16${\times}$16 block obtained from all candidates. And the motion vectors of blocks, including 8${\times}$4, 4${\times}$8, and 4${\times}$4, is obtained by searching eight pixels around the best motion vector of 8${\times}$8 block. The proposed motion search is applied to the H.264 encoder that performs variable blocks motion estimation (ME). In terms of computational complexity, the proposed search algorithm for motion estimation (ME) calculates motion vectors in about 23.8 times speed compared with the spiral full search without early termination and 4.6 times speed compared with the motion estimation method using hierarchical sum of absolute difference (SAD) of 4${\times}$4 blocks, while it shows 0.1dB∼0.4dB peak signal-to-noise ratio (PSNR) drop in comparison to the spiral full search.

Motion Direction Oriented Fast Block Matching Algorithm (움직임 방향 지향적인 고속 블록정합 알고리즘)

  • Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2007-2012
    • /
    • 2011
  • To reduce huge computation in the block matching, this paper proposes a fast block matching algorithm which limits search points in the search area. On the basis of two facts that most motion vectors are located in central part of search area and matching error is monotonic decreasing toward the best similar block, the proposed algorithm moves a matching pattern between steps by the one pixel, predicts the motion direction for the best similar block from similar blocks decided in previous steps, and limits movements of search points to ${\pm}45^{\circ}C$ on it. As a result, it could remove the needless search points and reduce the block matching computation. In comparison with the conventional similar algorithms, the proposed algorithm caused the trivial image degradation in images with fast motion but kept the equivalent image quality in images with normal motion, and it, meanwhile, reduced from about 20% to over 67% of the their block matching computation.

Improvement of Online Motion Planning based on RRT* by Modification of the Sampling Method (샘플링 기법의 보완을 통한 RRT* 기반 온라인 이동 계획의 성능 개선)

  • Lee, Hee Beom;Kwak, HwyKuen;Kim, JoonWon;Lee, ChoonWoo;Kim, H.Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.192-198
    • /
    • 2016
  • Motion planning problem is still one of the important issues in robotic applications. In many real-time motion planning problems, it is advisable to find a feasible solution quickly and improve the found solution toward the optimal one before the previously-arranged motion plan ends. For such reasons, sampling-based approaches are becoming popular for real-time application. Especially the use of a rapidly exploring random $tree^*$ ($RRT^*$) algorithm is attractive in real-time application, because it is possible to approach an optimal solution by iterating itself. This paper presents a modified version of informed $RRT^*$ which is an extended version of $RRT^*$ to increase the rate of convergence to optimal solution by improving the sampling method of $RRT^*$. In online motion planning, the robot plans a path while simultaneously moving along the planned path. Therefore, the part of the path near the robot is less likely to be sampled extensively. For a better solution in online motion planning, we modified the sampling method of informed $RRT^*$ by combining with the sampling method to improve the path nearby robot. With comparison among basic $RRT^*$, informed $RRT^*$ and the proposed $RRT^*$ in online motion planning, the proposed $RRT^*$ showed the best result by representing the closest solution to optimum.

A Study on Motion Sickness Incidence due to Changes in the Speed of the Training Ship Kaya (실습선 가야호의 선속 변화에 따른 뱃멀미 지수에 관한 연구)

  • Han, Seung-Jae;Ha, Young-Rok;Lee, Seung-Chul;Lee, Chang-Woo;Kim, In-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.228-233
    • /
    • 2014
  • In this paper, the motion performance in waves for the training ship Kaya of Pukyong National University is obtained by using a computer program based on Strip method. To guarantee the pleasant seafaring in ocean, the vertical acceleration of ship motion is calculated according to the location of the ship. The results of calculation by changes of ship speed are compared with the guideline of MSI(Motion Sickness Incidence). The degree of motion sickness is shown and discussed through the comparison between calculated vertical acceleration spectrum and MSI guideline. The computational results of MSI were as follow; when ship speed increased in the order of 5 knots, 10 knots, 12 knots and encounter angle became the bow quartering sea of $120^{\circ}$ compared to $180^{\circ}$ and $150^{\circ}$, the vertical acceleration values grew higher.

Effects of elevation on shoulder joint motion: comparison of dynamic and static conditions

  • Takaki Imai;Takashi Nagamatsu;Junichi Kawakami;Masaki Karasuyama;Nobuya Harada;Yu Kudo;Kazuya Madokoro
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.148-155
    • /
    • 2023
  • Background: Although visual examination and palpation are used to assess shoulder motion in clinical practice, there is no consensus on shoulder motion under dynamic and static conditions. This study aimed to compare shoulder joint motion under dynamic and static conditions. Methods: The dominant arm of 14 healthy adult males was investigated. Electromagnetic sensors attached to the scapular, thorax, and humerus were used to measure three-dimensional shoulder joint motion under dynamic and static elevation conditions and compare scapular upward rotation and glenohumeral joint elevation in different elevation planes and angles. Results: At 120° of elevation in the scapular and coronal planes, the scapular upward rotation angle was higher in the static condition and the glenohumeral joint elevation angle was higher in the dynamic condition (P<0.05). In scapular plane and coronal plane elevation 90°-120°, the angular change in scapular upward rotation was higher in the static condition and the angular change in scapulohumeral joint elevation was higher in the dynamic condition (P<0.05). No differences were found in shoulder joint motion in the sagittal plane elevation between the dynamic and static conditions. No interaction effects were found between elevation condition and elevation angle in all elevation planes. Conclusions: Differences in shoulder joint motion should be noted when assessing shoulder joint motion in different dynamic and static conditions.

Comparison of Protein Internal Motion by Inter-helical Motional Correlations and Hydrogen Bond Ratio

  • Kim, Byoung-Kook;Yoon, Chang-No
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.305-310
    • /
    • 2005
  • Internal motion of the protein has been described in many papers with C$_{\alpha}$ correlation coefficients to find motional correlation and functional characteristics. To describe the secondary structural motion and stability in protein, we have studied molecular dynamics (MD) simulations on FADD Death Domain and FADD Death Effector Domain which have a similar structure but have different functional characteristics. After 10ns MD simulations, the inter-helical motional correlations and the hydrogen bond ratios were compared between the two domains. From these data we could distinctly compare the internal motions of them and could explain the differences in experimental thermodynamic melting behaviors at molecular level.

  • PDF

Dynamic Response Characteristics of Tension Leg Platforms in Waves (인장계류식 해양구조물의 동적응답 특성)

  • Lee, C.H.;Son, Y.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 1998
  • The dynamic response characteristics of Tension Leg Platforms(TLPs) in waves are examined for presenting the basic data for design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. Numerical results are compared with the experimental ones, which are obtained in the literature, concerning the motion and tension responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Structural control of cable-stayed bridges under traveling earthquake wave excitation

  • Raheem, Shehata E Abdel
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.269-280
    • /
    • 2018
  • Post-earthquake damages investigation in past and recent earthquakes has illustrated that the ground motion spatial variation plays an important role in the structural response of long span bridges. For the structural control of seismic-induced vibrations of cable-stayed bridges, it is extremely important to include the effects of the ground motion spatial variation in the analysis for design of an effective control system. The feasibility and efficiency of different vibration control strategies for the cable-stayed bridge under multiple support excitations have been examined to enhance a structure's ability to withstand earthquake excitations. Comparison of the response due to non-uniform input ground motion with that due to uniform input demonstrates the importance of accounting for spatial variability of excitations. The performance of the optimized designed control systems for uniform input excitations gets worse dramatically over almost all of the evaluation criteria under multiple-support excitations.

Localization of an Underwater Robot Using Acoustic Signal (음향 신호를 이용한 수중로봇의 위치추정)

  • Kim, Tae Gyun;Ko, Nak Yong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.231-242
    • /
    • 2012
  • This paper proposes particle filter(PF) method using acoustic signal for localization of an underwater robot. The method uses time of arrival(TOA) or time difference of arrival(TDOA) of acoustic signals from beacons whose locations are known. An experiment in towing tank uses TOA information. Simulation uses TDOA information and it reveals dependency of the localization performance on the uncertainty of robot motion and senor data. Also, comparison of the PF method with the least squares method of spherical interpolation(SI) and spherical intersection(SX) is provided. Since PF uses TOA or TDOA which comes from measurement of external information as well as internal motion information, its estimation is more accurate and robust to the sensor and motion uncertainty than the least squares methods.