• Title/Summary/Keyword: Motion Comparison

Search Result 1,227, Processing Time 0.03 seconds

Motion Recognition for Kinect Sensor Data Using Machine Learning Algorithm with PNF Patterns of Upper Extremities

  • Kim, Sangbin;Kim, Giwon;Kim, Junesun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.214-220
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the availability of software for rehabilitation with the Kinect sensor by presenting an efficient algorithm based on machine learning when classifying the motion data of the PNF pattern if the subjects were wearing a patient gown. Methods: The motion data of the PNF pattern for upper extremities were collected by Kinect sensor. The data were obtained from 8 normal university students without the limitation of upper extremities. The subjects, wearing a T-shirt, performed the PNF patterns, D1 and D2 flexion, extensions, 30 times; the same protocol was repeated while wearing a patient gown to compare the classification performance of algorithms. For comparison of performance, we chose four algorithms, Naive Bayes Classifier, C4.5, Multilayer Perceptron, and Hidden Markov Model. The motion data for wearing a T-shirt were used for the training set, and 10 fold cross-validation test was performed. The motion data for wearing a gown were used for the test set. Results: The results showed that all of the algorithms performed well with 10 fold cross-validation test. However, when classifying the data with a hospital gown, Hidden Markov model (HMM) was the best algorithm for classifying the motion of PNF. Conclusion: We showed that HMM is the most efficient algorithm that could handle the sequence data related to time. Thus, we suggested that the algorithm which considered the sequence of motion, such as HMM, would be selected when developing software for rehabilitation which required determining the correctness of the motion.

The Comparison of Effect of Sports Massage, Kaltenborn-Evjenth Orthopedic Manipulative Therapy and Electrical Therapy, General Exercise Therapy in ROM Increase and Pain Reduction in Patients with Frozen Shoulder (동결견 환자의 관절가동범위 회복과 통증 감소에 있어서 스포츠 마사지 및 Kaltenborn-Evjenth정형도수치료와 전기치료 및 일반 운동치료의 효과 비교)

  • Nam, Hyoung-Chun;Woo, Kwang-Seog
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.73-85
    • /
    • 2003
  • The purpose of the present study was to the investigate the effect of sports massage, kaltenborn-evjenth orthopedic manipulative therapy and electrical therapy, general exercise on the limitation of range of motion(ROM) and on the pain(VAS) in patients with frozen shoulder. Fiftheen frozen shoulder patients between 50 and 60 years of age(females) were selected and were divided equally by random distribution into A group(sports massage, kaltenborn-evjenth orthopedic manipulative therapy, N=7)and B(electrical therapy, general exercise therapy, N=7) group. The results obtained were as follows : 1) The range of motion between two groups are significantly different in the treatment times, the ROM of A group increase in after-treatment(2 week 4 week) in comparison with ROM in before-treatment, it is significant increase. And it is significant difference in B group. 2) The pain level between two groups are not significantly different in the treatment times, the pain level of A group decrease in after-treatment(2 week, 4 week) in comparison with before-treatment, it is significant decrease. And it is significant difference in B group. Although the pain level of the A group decrease in after 2 week treatment in comparison with before-treatment but it is not significant decrease. Although the pain level of the B group decrease in after 4 week treatment in comparison with after 2 week treatment, but it is not significant decrease. 3) The A group is more effective in increasing the ROM and decreasing the pain level than B group during treatment times. The results showed that both A group method and B group method are effective ROM increase and pain reduce, but A group method is superior to B group method in ROM increase and pain reduce.

  • PDF

Development of a Posture Classification Scheme Reflecting the Effects of External Load and Motion Repetition (외부 부하, 동작 반복 효과가 반영된 자세 분류 체계의 개발)

  • Kee, Do-Hyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • The purpose of this study was to develop a comprehensive posture classification scheme considering the effects of external load and motion repetition as well as those of working posture. The scheme was developed based on a series of existing empirical studies dealing with postural classification scheme, effects of external load and motion repetition. Ranges of joint motions, external load and motion repetition were divided into the groups with the same degree of discomforts. Each group was assigned a numerical relative discomfort score of code on the basis of discomfort values for the neutral position of elbow flexion. The criteria for evaluating stress of working postures were proposed based on the four distinct action categories, in order to enable practitioners to apply appropriate corrective actions. The proposed scheme was compared with OWAS, RULA and REBA. The comparison revealed that while the proposed scheme and RULA showed similar results for the working postures with light external load and non-repetitive postures, the former overestimated postural load for postures with moderate or heavy external load and repetitive postures than the latter.

An Interactive Aerobic Training System Using Vision and Multimedia Technologies

  • Chalidabhongse, Thanarat H.;Noichaiboon, Alongkot
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1191-1194
    • /
    • 2004
  • We describe the development of an interactive aerobic training system using vision-based motion capture and multimedia technology. Unlike the traditional one-way aerobic training on TV, the proposed system allows the virtual trainer to observe and interact with the user in real-time. The system is composed of a web camera connected to a PC watching the user moves. First, the animated character on the screen makes a move, and then instructs the user to follow its movement. The system applies a robust statistical background subtraction method to extract a silhouette of the moving user from the captured video. Subsequently, principal body parts of the extracted silhouette are located using model-based approach. The motion of these body parts is then analyzed and compared with the motion of the animated character. The system provides audio feedback to the user according to the result of the motion comparison. All the animation and video processing run in real-time on a PC-based system with consumer-type camera. This proposed system is a good example of applying vision algorithms and multimedia technology for intelligent interactive home entertainment systems.

  • PDF

Ground-motion prediction equation for South Korea based on recent earthquake records

  • Jeong, Ki-Hyun;Lee, Han-Seon
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2018
  • A ground-motion prediction equation (GMPE) for the Korean Peninsula, especially for South Korea, is developed based on synthetic ground motions generated using a ground motion model derived from instrumental records from 11 recent earthquakes of $M_L$>4.5 in Korea, including the Gyeongju earthquake of Sept. 12. 2016 ($M_L$5.8). PSAs of one standard deviation from the developed GMPE with $M_W$ 6.5 at hypocentral distances of 15 km and 25 km are compared to the design spectrum (soil condition, $S_B$) of the Korean Building Code 2016 (KBC), indicating that: (1) PSAs at short periods around 0.2 sec can be 1.5 times larger than the corresponding KBC PSA, and (2) SD's at periods longer than 2 sec do not exceed 8 cm. Although this comparison of the design spectrum with those of the GMPE developed herein intends to identify the characteristics of the scenario earthquake in a lower-seismicity region such as South Korea, it does not mean that the current design spectrum should be modified accordingly. To develop a design spectrum compatible with the Korean Peninsula, more systematic research using probabilistic seismic hazard analysis is necessary in the future.

Efficient Measurement System to Investigate Micro-Doppler Signature of Ballistic Missile

  • Choi, In-O;Kim, Kyung-Tae;Jung, Joo-Ho;Kim, Si-Ho;Park, Sang-Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.614-621
    • /
    • 2016
  • Micro-Doppler (MD) shift caused by the micro-motion of a ballistic missile (BM) can be very useful to identify it. In this paper, the MD signatures of three scale-model BMs are investigated using a portable measurement system. The measurement system consists of an X-band 2-by-2 phase comparison mono-pulse radar, and a mechanical device that can impart controlled spinning and coning motions simultaneously to a model to yield the MD signature that replicates the characteristic of each target and the corresponding micro-motion. The coning motion determined the overall period of MD, and the spinning motion increased its amplitude. MD was also dependent on aspect angle. The designed system is portable, and can implement many micro-motions; it will contribute to analysis of MD in various situations.

Computational modeling of buried blast-induced ground motion and ground subsidence

  • Zhang, Zhi-Chao;Liu, Han-Long;Pak, Ronald Y.S.;Chen, Yu-Min
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.613-631
    • /
    • 2014
  • To complement the method of field-scale seismic ground motion simulations by buried blast techniques, the application and evaluation of the capability of a numerical modeling platform to simulate buried explosion-induced ground motion at a real soil site is presented in this paper. Upon a layout of the experimental setup at a level site wherein multiple charges that were buried over a large-diameter circle and detonated in a planned sequence, the formulation of a numerical model of the soil and the explosives using the finite element code LS-DYNA is developed for the evaluation of the resulting ground motion and surface subsidence. With a compact elastoplastic cap model calibrated for the loess soils on the basis of the site and laboratory test program, numerical solutions are obtained by explicit time integration for various dynamic aspects and their relation with the field blast experiment. Quantitative comparison of the computed ground acceleration time histories at different locations and induced spatial subsidence on the surface afterwards is given for further engineering insights in regard to the capabilities and limitations of both the numerical and experimental approaches.

A dynamic response Analysis of Tension Leg Platforms in Waves (II) (인장계류식 해양구조물의 동적응답해석(II))

  • 구자삼;박찬후;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.25-35
    • /
    • 1996
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the orgin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Numerical Study on the Improvement of the Motion Performance of a Light Buoy

  • Son, Bo-Hun;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.66-76
    • /
    • 2020
  • A light buoy is equipped with lighting functions and navigation signs. Its shape and colors indicate the route to vessels sailing nearby in the daytime, with its lights providing this information at night. It also plays a role in notifying the presence of obstacles such as reefs and shallows. When a light buoy operates in the ocean, the visibility and angle of light from the lantern installed on the buoy changes, which may cause them to function improperly. Therefore, it is necessary for the buoy to have stable and minimal motions under given environmental conditions, mainly waves. In this study, motion analyses for a newly developed lightweight light-buoy in waves were performed to predict the motion performance and determine the effect of the developed appendages for improving the motion performance. First, free decay tests, including benchmark cases, were performed using computational fluid dynamics (CFD) to estimate the viscous damping coefficients, which could not be obtained using potential-based simulations. A comparison was made of the results from potential-based simulations with and without considering viscous damping coefficients, which were estimated using CFD. It was confirmed that the pitch and heave motions of the buoy became smaller when the developed appendages were adopted.

The Effect of Upper Extremity Usage and Length of Training to the Function of Dance Turn (상지 이용 유무와 훈련 기간이 무용 회전 동작의 기능에 미치는 영향)

  • Park, Yang-Sun;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.175-184
    • /
    • 2007
  • The first purpose of this study was to compare kinematic variables during spinning motion with or without upper extremity and identify the most effective spinning method. The second purpose of this study was to compare functional difference between novice and elite dancers with the term of training. Ten experienced female dancers and ten novices were recruited as subjects for this study. Elite group was asked to perform turn motion with three types of upper extremity. Novice group has taken training of spotting technique for five weeks. Four Falcon HiRES cameras were used to analyze kinematic variables including head angular velocity and CG displacement during spinning. These data were sampled before training, after 3-week, and 5-week of training. Eight different events in two consecutive turns were defined for statistical comparison. One-way ANOVA was performed to compare among the kinematics of turning motion with three types of upper extremity. Independent t-test also used to compare kinematics between elite and novice at three different length of training. As results, spinning with both arm increased angular velocity and stability compared to the turning motion with one arm or with arm strapped and found out that the turn with both arm was the most effective way of spin. Also, for novice dancers, three weeks of training were needed to complete spinning motion.