References
- Jeong DH. Reliability and validity of the cap for computer access assessment of persons with physical disabilities. J Kor Phys Ther. 2015;27(1):30-7. https://doi.org/10.18857/jkpt.2015.27.1.30
- Zhou H, Hu H. Human motion tracking for rehabilitation-a survey. Biomedical Signal Processing and Control. 2008;3(1):1-18. https://doi.org/10.1016/j.bspc.2007.09.001
- Windolf M, Gotzen N, Morlock M. Systematic accuracy and precision analysis of video motion capturing systems--exemplified on the vicon-460 system. J Biomech. 2008;41(12):2776-80. https://doi.org/10.1016/j.jbiomech.2008.06.024
- Della Croce U, Leardini A, Chiari L et al. Human movement analysis using stereophotogrammetry. Part 4: Assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 2005;21(2):226-37. https://doi.org/10.1016/j.gaitpost.2004.05.003
- Rohr K. Incremental recognition of pedestrians from image sequences. Computer Vision and Pattern Recognition, 1993. Proceedings CVPR '93., 1993 IEEE Computer Society Conference on. 1993:8-13.
- Park SD, Kim JY, Yu SH et al. Comparison of balance and fall efficacy of virtual reality program in elderly women with fall experience. J Kor Phys Ther. 2014;26(6):430-5.
- Lee GH. Effects of virtual reality exercise program on balance in multiple sclerosis patients. J Kor Phys Ther. 2015;27(1):61-7. https://doi.org/10.18857/jkpt.2015.27.1.61
- Pastor I, Hayes HA, Bamberg SJM. A feasibility study of an upper limb rehabilitation system using kinect and computer games. Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. 2012:1286-9.
- Chang YJ, Chen SF, Huang JD. A kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Res Dev Disabil. 2011;32(6):2566-70. https://doi.org/10.1016/j.ridd.2011.07.002
- Shotton J, Fitzgibbon A, Cook M et al. Real-time human pose recognition in parts from single depth images. Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. 2011:1297-304.
- Clark RA, Pua YH, Fortin K et al. Validity of the microsoft kinect for assessment of postural control. Gait Posture. 2012;36(3):372-7. https://doi.org/10.1016/j.gaitpost.2012.03.033
- Yang Y, Fang P, Yan L et al. Reliability and validity of kinect rgb-d sensor for assessing standing balance. Sensors Journal, IEEE. 2014;14(5):1633-8. https://doi.org/10.1109/JSEN.2013.2296509
- Bonnechere B, Jansen B, Salvia P et al. Validity and reliability of the kinect within functional assessment activities: Comparison with standard stereophotogrammetry. Gait Posture. 2014;39(1):593-8. https://doi.org/10.1016/j.gaitpost.2013.09.018
- Hwang SS. Basic concept of pnf and its approach for sports injury. KINESIOLOGY. 2002;2002(1):140-3.
- Lim CG. The effects of proprioceptive neuromuscular facilitation (pnf) pattern exercise using the sprinter and the skater on balance and gait function in the stroke patients. J Kor Phys Ther. 2008;26(4):249-56.
- Vikramkumar, B V, Trilochan. Bayes and naive bayes classifier. ArXiv eprints. 2014;1404:933.
- Son J, Kim SB. Rule selection method in decision tree models. The Proceedings of KIIE. 2013;2013(11):13-23.
- Rabiner L. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE. 1989;77(2):257-86. https://doi.org/10.1109/5.18626
- Kim JH, Park YW, Han KP. An implementation of real-time numeral recognizer based on hand gesture using both gradient and positional information. KIPS Transactions on Software and Data Engineering. 2013;2(3):199-204. https://doi.org/10.3745/KTSDE.2013.2.3.199
- Sin BK. Hmm toolbox development and analysis and comparison of hmm types. The Proceedings of KMMS. 2010;2010(2):9-10.
- Lee KM. Dynamic gesture recognition using svm and its application to an interactive storybook. The Journal of the Korea Contents Association. 2013;13(4):64-72. https://doi.org/10.5392/JKCA.2013.13.04.064