• Title/Summary/Keyword: Mos current-mode logic

Search Result 9, Processing Time 0.021 seconds

Design of a Low-Power MOS Current-Mode Logic Parallel Multiplier (저 전력 MOS 전류모드 논리 병렬 곱셈기 설계)

  • Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.211-216
    • /
    • 2008
  • This paper proposes an 8${\times}$8 bit parallel multiplier using MOS current-mode logic (MCML) circuit for low power consumption. The proposed circuit has a structure of low-power MOS current-mode logic circuit with sleep-transistor to reduce the leakage current. The sleep-transistor is used to PMOS transistor to minimize the leakage current. Comparing with the conventional MOS current-model logic circuit, the circuit achieves the reduction of the power consumption in sleep mode by 1/50. The designed multiplier is achieved to reduce the power consumption by 10.5% and the power-delay-product by 11.6% compared with the conventional MOS current-model logic circuit. This circuit is designed with Samsung 0.35 ${\mu}m$ standard CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

  • PDF

Structure of Low-Power MOS Current-Mode Logic Circuit with Sleep-Transistor (슬립 트랜지스터를 이용한 저 전력 MOS 전류모드 논리회로 구조)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.69-74
    • /
    • 2008
  • This paper proposes a structure of low-power MOS current-mode logic circuit with sleep-transistor to reduce the leakage current. The sleep-transistor is used to high-threshold voltage transistor to minimize the leakage current. The $16\;{\times}\;16$ bit parallel multiplier is designed by the proposed circuit structure. Comparing with the conventional MOS current-model logic circuit, the circuit achieves the reduction of the power consumption in sleep mode by 1/50. This circuit is designed with Samsung $0.35\;{\mu}m$ CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

Design of a Low-Power MOS Current-Mode Logic Circuit (저 전력 MOS 전류모드 논리회로 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.121-126
    • /
    • 2010
  • This paper proposes a low-power MOS current-mode logic circuit with the low voltage swing technology and the high-threshold sleep-transistor. The sleep-transistor is used to high-threshold voltage PMOS transistor to minimize the leakage current. The $16{\times}16$ bit parallel multiplier is designed by the proposed circuit structure. Comparing with the conventional MOS current-model logic circuit, the circuit achieves the reduction of the power consumption in sleep mode by 1/104. The proposed circuit is achieved to reduce the power consumption by 11.7% and the power-delay-product by 15.1% compared with the conventional MOS current-model logic circuit in the normal mode. This circuit is designed with Samsung $0.18\;{\mu}m$ standard CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

Design of a Low-Power Multiplier Using MOS Current Mode Logic Circuit (MOS 전류모드 논리회로를 이용한 저 전력 곱셈기 설계)

  • Lee, Yoon-Sang;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.11 no.2
    • /
    • pp.83-88
    • /
    • 2007
  • This paper proposes an 8${\times}$8 bit parallel multiplier using MOS current-mode logic (MCML) circuit for low power consumption. The 8${\times}$8 multiplier is designed with proposed MCML full adders and conventional full adders. The designed multiplier is achieved to reduce the power consumption by 9.4% and the power-delay-product by 11.7% compared with the conventional circuit. This circuit is designed with Samsung 0.35${\mu}m$ standard CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

  • PDF

Self-timed Current-mode Logic Family having Low-leakage Current for Low-power SoCs (저 전력 SoC를 위한 저 누설전류 특성을 갖는 Self-Timed Current-Mode Logic Family)

  • Song, Jin-Seok;Kong, Jeong-Taek;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.37-43
    • /
    • 2008
  • This paper introduces a high-speed low-power self-timed current-mode logic (STCML) that reduces both dynamic and leakage power dissipation. STCML significantly reduces the leakage portion of the power consumption using a pulse-mode control for shorting the virtual ground node. The proposed logic style also minimizes the dynamic portion of the power consumption due to short-circuit current by employing an enhanced self-timing buffer. Comparison results using a 80-nm CMOS technology show that STCML achieves 26 times reduction on leakage power consumption and 27% reduction on dynamic power consumption as compared to the conventional current-mode logic. They also indicate that up to 59% reduction on leakage power consumption compared to differential cascode voltage switch logic (DCVS).

A Simple Static Noise Margin Model of MOS CML Gate in CMOS Processes

  • Jeong, Hocheol;Kang, Jaehyun;Lee, Kang-Yoon;Lee, Minjae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.370-377
    • /
    • 2017
  • This paper presents a simple noise margin (NM) model of MOS current mode logic (MCML) gates especially in CMOS processes where a large device mismatch deteriorates logic reliability. Trade-offs between speed and logic reliability are discussed, and a simple yet accurate NM equation to capture process-dependent degradation is proposed. The proposed NM equation is verified for 130-nm, 110-nm, 65-nm, and 40-nm CMOS processes and has errors less than 4% for all cases.

A New Architecture of CMOS Current-Mode Analog-to-Digital Converter Using a 1.5-Bit Bit Cell (1.5-비트 비트 셀을 이용한 새로운 구조의 CMOS 전류모드 아날로그-디지털 변환기)

  • 최경진;이해길;나유찬;신홍규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.53-60
    • /
    • 1999
  • In this paper, it is proposed to a new architecture of CMOS IADC(Current-Mode Analog-to-Digital Converter) using 1.5-bit bit cell of which consists a CSH(Current-Mode Sample-and-Hold) and CCMP(Current-Mode Comparator). In order to guarantee the entire linearity of IADC, the CSH is designed to cancel CFT(Clock Feedthrough) whose resolution is to meet at the least 9-bit which is placed in the front-end of each bit cell. In the proposed IADC, digital correction logic is simplified and power consumption is reduced because bit cell of each stage needs two latch CCMP. Also, it is available for a mixed-mode integrated circuit because all of block is designed with only MOS transistor. With the HYUNDAI 0.8㎛ CMOS parameter, the HSPICE simulation results show that the proposed IADC can be operated at 20Ms/s with SNR of 43 dB with which is satisfied 7-bit resolution for input signal at 100 ㎑, and its power consumption is 27㎽.

  • PDF

Implementation of Ternary Valued Adder and Multiplier Using Current Mode CMOS (전류모드 CMOS에 의한 3치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1837-1844
    • /
    • 2009
  • In this paper, the circuit of 2 variable ternary adder and multiplier circuit using current mode CMOS are implemented. The presented ternary adder circuit and multiplier circuit using current mode CMOS are driven the voltage levels. We show the characteristics of operation for these circuits simulated by HSpice. These circuits are simulated under $0.18{\mu}m$ CMOS standard technology, $5{\mu}A$ unit current in $0.54{\mu}m/0.18{\mu}m$ ratio of NMOS length and width, and $0.54{\mu}m/0.18{\mu}m$ ratio of PMOS length and width, and 2.5V VDD voltage, MOS model Level 47 using HSpice. The simulation results show the satisfying current characteristics. The simulation results of current mode ternary adder circuit and multiplier circuit show the propagation delay time $1.2{\mu}s$, operating speed 300KHz, and consumer power 1.08mW.