• Title/Summary/Keyword: Morphology Control

Search Result 1,171, Processing Time 0.041 seconds

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites (생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구)

  • Jang, Sang Hee
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

Fabrication and Catalysis of $SiO_2$-Coated Ag@Au Nanoboxes

  • Lee, Jae-Won;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.588-588
    • /
    • 2013
  • Nanoscale noble-metals have attracted enormous attention from researchers in various fields of study because of their unusual optical properties as well as novel chemical properties. They have possible uses in diverse applications such as devices, transistors, optoelectronics, information storages, and energy converters. It is well-known that nanoparticles of noble-metals such as silver and gold show strong absorption bands in the visible region due to their surface-plasmon oscillation modes of conductive electrons. Silver nanocubes stand out from various types of Silver nanostructures (e.g., spheres, rods, bars, belts, and wires) due to their superior performance in a range of applications involvinglocalized surface plasmon resonance, surface-enhanced Raman scattering, and biosensing. In addition, extensive efforts have been devoted to the investigation of Gold-based nanocomposites to achieve high catalytic performances and utilization efficiencies. Furthermore, as the catalytic reactivity of Silver nanostructures depends highly on their morphology, hollow Gold nanoparticles having void interiors may offer additional catalytic advantages due to their increased surface areas. Especially, hollow nanospheres possess structurally tunable features such as shell thickness, interior cavity size, and chemical composition, leading to relatively high surface areas, low densities, and reduced costs compared with their solid counterparts. Thus, hollow-structured noblemetal nanoparticles can be applied to nanometer-sized chemical reactors, efficient catalysts, energy-storage media, and small containers to encapsulate multi-functional active materials. Silver nanocubes dispersed in water have been transformed into Ag@Au nanoboxes, which show highly enhanced catalytic properties, by adding $HAuCl_4$. By using this concept, $SiO_2$-coated Ag@Au nanoboxes have been synthesized via galvanic replacement of $SiO_2$-coated Ag nanocubes. They have lower catalytic ability but more stability than Ag@Au nanoboxes do. Thus, they could be recycled. $SiO_2$-coated Ag@Au nanoboxes have been found to catalyze the degradation of 4-nitrophenol efficiently in the presence of $NaBH_4$. By changing the amount of the added noble metal salt to control the molar ratio Au to Ag, we could tune the catalytic properties of the nanostructures in the reduction of the dyes. The catalytic ability of $SiO_2$-coated Ag@Au nanoboxes has been found to be much more efficient than $SiO_2$-coated Ag nanocubes. Catalytic performances were affected noteworthily by the metals, sizes, and shapes of noble-metal nanostructures.

  • PDF

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB) (PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상)

  • Lee, Sanghyun;Seok, Dohyeong;Jeong, Yohan;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

MORPHOLOGICAL CHANGES OF DENTIN SURFACE TREATED WITH VARIOUS DENTIN SURFACE CONDITIONERS (수종(數種) 표면처리제(表面處理劑)에 의(依)한 상아질(象牙質) 표면(表面)의 형태(形態) 변화(變化)에 관(關)한 연구(硏究))

  • Cho, Jin-Ho;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.323-334
    • /
    • 1988
  • The purpose of this study was to observe the effect of dentin surface conditioners on the dentin surfaces. Freshly extracted human molars were used in this study. They were stored at $4^{\circ}C$ saline solution before experiment. The crown portions of the teeth were cut in various directions by means of wet diamond point to expose dentin which include transverse, vertical oblique, horizontal and oblique cut to the long axis (Fig. 1). Each tooth was then mounted with self curing acrylic resin in brass ring to expose the flattened dentin surfaces. Final finish was accomplished by grinding the dentin specimens with wet No. 180 and No. 600 grit silicon carbide abrasive paper until a 6.0mm in diameter on a dentin surface was exposed without pulp exposure. The specimens were divided into 9 groups according to the modes of dentin treatment procedure. The following surface treatments were applied on these preparation surfaces; Group 1: unetched (control group) after finish with No. 600 silicon carbide abrasive paper. Group 2: etched with 30% phosphoric acid for 60s Group 3: etched with 10-3 solution for 60s Group 4: Cleaned with 5% NaOCl for 30s Group 5: applied Dentin Adhesit Group 6: cleaned with 5% NaOCl followed by applying the Dentin Adhesit$^{(R)}$ Group 7: applied Photo Bond on the unetched dentin followed by applying the Photo Clearfil Bright Group 8: Etched with 30% phosphoric acid followed by applying Photo Bond and Photo Clearfil Bright Group 9: etched with 10-3 solution followed by applying Photo Bond and Photo Clearfil Bright All the specimens were stored in $37^{\circ}C$ under 50% relative humidity for 24 hours before observations. The specimens in 7, 8, and 9 group, omitting the group 1 to 6, were demineralized in 10% HCl for 10s in order to observe the resin tags. All the specimens in each group were then dried at room temperature. The dried specimens were ion coated with Eiko ion coater (Eiko-engineering Co.), and observed in Hitachi S-430 Scanning electron microscope (Hitachi, Co. Tokyo) at 15KV. The following results were obtained as follows; 1. The smear layers were still remained in group 1,2,4,5, and 6. 2. There is no effect of 5% NaOCl and 30% phosphoric acid on the changes of dentin morphology 3. The dentin treated with 10-3 solution, indicating the tubules opened when the smear layer and the dental plug dissolved. 4. In case of applying the bonding agents the resin tag was not formed at the deep area of dentinal tubules, but in case of applying the Dentin Adhesit$^{(R)}$ that was not.

  • PDF

Preparation and Effect of Eudragit E100 Microcapsules Containing Grapefruit Seed Extract on Kimchi (자몽씨 추출물을 함유한 Eudragit E100 미세캡슐의 제조 및 김치에 대한 영향)

  • 김한수;정성기;조성환;구재관;이승철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1239-1244
    • /
    • 2003
  • Microcapsules were prepared by coacervation method using acetone/liquid paraffin system to control the ripening of kimchi. Eudragit E100, which was soluble at below pH 5.0 in aqueous solution, was used to make microcapsules to be sensitive to acidity of kimchi. The microcapsules with Eudragit E100 containing grapefruit seed extract (GFSE) showed the highest yield of 92.13%, the size of microcapsules was decreasing as increasing the amount of aluminium stearate, a dispersing agent. Morphology of the microcapsules determined by scanning electron microscopy showed spherical forms. GFSE, encapsulated antimicrobial agents, was quickly released at acidic buffer (pH 4,5,6) within 1 storage day. However, 70% of encapsulated GFSE in Eudragit E100 microcapsules was continuously released at pH 7 till 3 days, and it was sustained till 9 days. Characteristics of kimchi containing microcapsules of GFSE were analysed with ripening period. Decease of pH in kimchi was retarded with the added GFSE microcapsules till 2 days of fermentation, but GFSE did not affect pH in kimchi after 3 days. Total numbers of microorganisms and lactic acid microorganisms in kimchi were decreased with increasing the amount of the added GFSE microcapsules, however, the effect of controlled released GFSE from pH sensitive Eudragit E100 microcapsules was hard to detect. These results suggest the possibility of pH sensitive microcapsules for high qualify of kimchi.

The Antitumor Effects of Selenium Compound $Na_5SeV_5O_{18}{\cdot}3H_2O$ in K562 Cell

  • Yang, Jun-Ying;Wang, Zi-Ren
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.859-865
    • /
    • 2006
  • With an approach to study the anti-tumor effects and mechanism of selenium compound, we investigated the anti-tumor activity and mechanism of $Na_5SeV_5O_{18}{\cdot}3H_2O$ (NaSeVO) in K562 cells. The results showed that $0.625{\sim}20\;mg/L$ NaSeVO could significantly inhibit the proliferation of K562 cells in vitro in a time- and concentration-dependent manner as determined by microculture tetrazolium (MTT) assay, the IC50 values were 14.41 (4.45-46.60) and 3.45 (2.29-5.22) mg/L after 48 hand 72 h treatment with NaSeVO respectively. In vivo experiments demonstrated that i.p. administration of 5, 10 mg/kg NaSeVO exhibited an significant inhibitory effect on the growth of transplantation tumor sarcoma 180 (S180) and hepatoma 22 (H22) in mice, with inhibition rate 26.8% and 58.4% on S180 and 31.3% and 47.4% on H22, respectively. Cell cycle studies indicated that the proportion of G0/G1 phase was increased at 2.5 mg/L while decreased at 10 mg/L after treatment for 24, 48 h. Whereas S phase was decreased at 2.5-5 mg/L and markedly increased at 10 mg/L after treatment for 48 h. After treatment for 24 h, 10 mg/L NaSeVO also markedly increased S and G2/M phases. Take together, the result clearly showed that NaSeVO markedly increased S and G2/M phases at 10 mg/L. The study of immunocytochemistry showed that the expression bcl-2 is significantly inhibited by 10 mg/L NaSeVO, and bax increased. Morphology observation also revealed typical apoptotic features. NaSeVO also significantly caused the accumulation of $Ca^{2+}$ and $Mg^{2+}$, reactive oxygen species (ROS) and the reduction of pH value and mitochondrial membrane potential in K562 cells as compared with control by confocal laser scanning microscope. These results suggest that NaSeVO has anti-tumor effects and its mechanism is attributed partially to apoptosis induced by the elevation of intracellular $Ca^{2+}$, $Mg^{2+}$ and ROS concentration, and a reduction of pH value and mitochondria membrane potential (MMP).

Anticancer Effects of Cultivated Orostachys japonicus on Human Prostate Cancer Cells (인체 전립선 암세포에서 재배 와송의 항암효과)

  • Won, Yeong Seon;Lee, Ju Hye;Kwon, Soon Jae;Ahn, Dong Uk;Shin, Dong Young;Seo, Kwon Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • This study was performed to determine the anticancer effects of cultivated Orostachys japonicus (COJ) and wild Orostachys japonicus (WOJ) on primary human prostate cancer cells (RC-58T/h/SA#4 cells). The morphology of cells treated with COJ and WOJ was distorted to shrunken cell masses. In addition, cell death induced by COJ and WOJ was associated with increased population of cells in sub-G1 phase as well as the formation of apoptotic bodies and nuclear condensation. COD and WOJ markedly reduced the number of viable prostate cancer cells in a dose-dependent manner, and cell numbers were lower than control cells. COJ and WOJ also inhibited increases in cell proliferation induced by environmental hormones such as dioxin and bisphenol A in charcoal-treated FBS (cFBS) medium. COJ and WOJ methanol extracts at the tested concentrations (150, 300, and 600 ${\mu}g/mL$) also dose-dependently inhibited cell proliferation induced by environmental hormones. These results indicate that COJ and WOJ exert anticancer effects on primary human prostate cancer cells.

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

Studies on the Wilt of Strawberry Caused by Fusarium oxysporum f. sp. fragariae in Korea (딸기 시들음병에 관한 연구)

  • Cho Chong Taik;Moon Byung Ju
    • Korean journal of applied entomology
    • /
    • v.23 no.2 s.59
    • /
    • pp.74-81
    • /
    • 1984
  • The experiments were conducted to study the distribution of wilt of strawberry caused by Fusarium in Korea, the characters of the causal fnngus and its control. The results obtained are summarized as follows. 1. Wilt of strawberry has been found in Gimhae and Samrangjin, Gyeongnam province a few years ago. This disease has been spreading year after year, and observed on farms in most of the strawberry-growing areas in Korea. 2. The fungus was isolated frequently from the crowns and petioles of diseased straw berry plants, and the fungus belonging to Fusariun oxysporum in terms of the morphological characteristics of macroconidia, microconidia, chlamydospore and conidiophore on V-8 Agar. 3. The macroconidia formation of the fungus varied remarkably with the Isolates and kinds of medium tested. However. all isolates abundantly produced macroconidia on V-8 Agar. 4. The cross-inoculation tests with several forma specialis of F. oxysporum to cucumber, tomato, watermelon, luffa, cabbage, melon and strawberry were carried out. The isolates from strawberry viz. Kodama's F. oxysporum f. sp. fragariae and S-1 of the authors were pathogenic to only strawberry. The fungus was also similar in morphology and symptoms to Kodama's and Winks' isolate of F. oxysporum f. sp. fragariae. Therefore, the fungus is identified as Fusarium oxysporum Schl. f. sp. fragariae Winks & Williams. 5. The most effective fungicides were Benomyl and Homai for inhibiting sporulation and mycelial growth of the fungus. 6 The cultivar Kurumae 35, Himiko, Senga gigana and Daehak I were resistant, whereas Hokowase, Instiate Z4, Juspa, Puget beauty and Marshall were susceptible to the fungus with artificial inoculation.

  • PDF

In situ Microfluidic Method for the Generation of Monodisperse Double Emulsions (미세유체를 이용한 단분산성 이중 에멀젼 생성 방법)

  • Hwang, So-Ra;Choi, Chang-Hyung;Kim, Hui-Chan;Kim, In-Ho;Lee, Chang-Soo
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.177-181
    • /
    • 2012
  • This study presents the preparation of double emulsions in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. To improve the wettability of hydrophilic continuous phase onto a hydrophobic PDMS microchannel, the surface was modified with 3-(trimethoxysilyl) propyl methacrylate (TPM) and then sequentially reacted with acrylic acid monomer solution, which produced selective covalent bonding between acrylic acids and methacrylate groups. For the proof of selective surface modification, tolonium chloride solution was used to identify the modified region and we confirmed that the approach was successfully performed. When water containing 0.5% w/w sodium dodecyl sulfate and 1% w/w Span80 with hexadecane were loaded into the selectively modified microfluidic channels, we can produce stable double emulsion. Based on the spreading coefficients, we predict the morphology of double emulsions. Our proposed method efficiently produces monodisperse double emulsions having 48.5 ${\mu}m$(CV:1.6%) core and 65.1 ${\mu}m$ (CV:1.6%) shell. Furthermore, the multiple emulsions having different numbers of core were easily prepared by simple control of flow rates.