• Title/Summary/Keyword: Monte-Carlo least squares

Search Result 61, Processing Time 0.024 seconds

The Comparison Analysis of an Estimators of Nonlinear Regression Model using Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 비선형회귀추정량들의 비교 분석)

  • 김태수;이영해
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.43-51
    • /
    • 2000
  • In regression model, we estimate the unknown parameters by using various methods. There are the least squares method which is the most general, the least absolute deviation method, the regression quantile method and the asymmetric least squares method. In this paper, we will compare each others with two cases: firstly the theoretical comparison in the asymptotic sense and then the practical comparison using Monte Carlo simulation for a small sample size.

  • PDF

Monte Carlo simulation of the estimators for nonlinear regression model (비선형 회귀모형 추정량들의 몬데칼로 시뮬레이션에 의한 비교)

  • 김태수;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.6-10
    • /
    • 2000
  • In regression model we estimate the unknown parameters using various methods. There are the least squares method which is the most general, the least absolute deviation, the regression quantile and the asymmetric least squares method. In this paper, we will compare each others with two case: to begin with the theoretical comparison in the asymptotic sense, and then the practical comparison using Monte Carlo simulation for a small sample size.

  • PDF

Visualization of Vector Fields from Density Data Using Moving Least Squares Based on Monte Carlo Method (몬테카를로 방법 기반의 이동최소제곱을 이용한 밀도 데이터의 벡터장 시각화)

  • Jong-Hyun Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose a new method to visualize different vector field patterns from density data. We use moving least squares (MLS), which is used in physics-based simulations and geometric processing. However, typical MLS does not take into account the nature of density, as it is interpolated to a higher order through vector-based constraints. In this paper, we design an algorithm that incorporates Monte Carlo-based weights into the MLS to efficiently account for the density characteristics implicit in the input data, allowing the algorithm to represent different forms of white noise. As a result, we experimentally demonstrate detailed vector fields that are difficult to represent using existing techniques such as naive MLS and divergence-constrained MLS.

Application of Pulse Pile-Up Correction Spectrum to the Library Least-Squares Method (펄스 중첩 보정 스펙트럼의 라이브러리 최소자승법에의 이용)

  • Lee, Sang-Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.173-179
    • /
    • 2006
  • The Monte Carlo simulation code CEARPPU has been developed and updated to provide pulse pile-up correction spectra for high counting rate cases. For neutron activation analysis, CEARPPU correction spectra were used in library least-squares method to give better isotopic activity results than the convention library least-squares fitting with uncorrected spectra.

On the Estimation in Regression Models with Multiplicative Errors

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.193-198
    • /
    • 1999
  • The estimation of parameters in regression models with multiplicative errors is usually based on the gamma or log-normal likelihoods. Under reciprocal misspecification, we compare the small sample efficiencies of two sets of estimators via a Monte Carlo study. We further consider the case where the errors are a random sample from a Weibull distribution. We compute the asymptotic relative efficiency of quasi-likelihood estimators on the original scale to least squares estimators on the log-transformed scale and perform a Monte Carlo study to compare the small sample performances of quasi-likelihood and least squares estimators.

  • PDF

The Geolocation Based on Total Least Squares Algorithm Using Satellites (위성을 이용한 Total Least Squares 기반 신호원 측위 알고리즘)

  • 박영미;조상우;전주환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.255-261
    • /
    • 2004
  • The problem of geolocation using multiple satellites is to determine the position of a transmitter located on the Earth by processing received signals. The specific problem addressed in this paper is that of estimating the position of a stationary transmitter located on or above the Earth's surface from measured time difference of arrivals (TDOA) by a geostationary orbiting (GSO) satellite and a low earth orbiting (LEO) satellite. The proposed geolocation method is based on the total least squares (TLS) algorithm. Under erroneous positions of the satellites together with noisy TDOA measurements, the TLS algorithm provides a better solution. By running Monte-Carlo simulations, the proposed method is compared with the ordinary least squares (LS) approach.

Robust inference for linear regression model based on weighted least squares

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.271-284
    • /
    • 2002
  • In this paper we consider the robust inference for the parameter of linear regression model based on weighted least squares. First we consider the sequential test of multiple outliers. Next we suggest the way to assign a weight to each observation $(x_i,\;y_i)$ and recommend the robust inference for linear model. Finally, to check the performance of confidence interval for the slope using proposed method, we conducted a Monte Carlo simulation and presented some numerical results and examples.

  • PDF

NONLINEAR ASYMMETRIC LEAST SQUARES ESTIMATORS

  • Park, Seung-Hoe;Kim, Hae-Kyung;Lee, Young
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.47-64
    • /
    • 2003
  • In this paper, we consider the asymptotic properties of asymmetric least squares estimators for nonlinear regression models. This paper provides sufficient conditions for strong consistency and asymptotic normality of the proposed estimators and derives asymptotic relative efficiency of the pro-posed estimators to the regression quantile estimators. We give some examples and results of a Monte Carlo simulation to compare the asymmetric least squares estimators with the regression quantile estimators.

Calibration of Parameters in QUAL2E using the Least-squares Method (최소지승법에 의한 QUAL2E 모델 반응계수 보정)

  • Kim, Kyung-Sub;Yoon, Dong-Gu;Lee, Gi-Young
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.719-727
    • /
    • 2004
  • Water quality models can be applied to manage the regional water quality problems and to estimate the target and allowable pollution load in watershed effectively. The optimization of state variables in the given water quality model Is necessary to build up more effective model. The least-squares method is applied to fit field observations in QUAL2E developed by U.S. EPA, which is most widely used one in the world to simulate the stream water quality, and the optimization model with constraints is constructed to estimate the parameters. The objective function of the optimization model is solved by Solver in Microsoft Excel and Monte Carlo simulation is conducted to know the influence of parameter in conventional pollutants. It is found that this technique is easily implemented and rapidly convergent computational procedure to calibrate the parameters after appling this approach in Anyang stream located in Kyonggi province mainly.

Alternative robust estimation methods for parameters of Gumbel distribution: an application to wind speed data with outliers

  • Aydin, Demet
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.383-395
    • /
    • 2018
  • An accurate determination of wind speed distribution is the basis for an evaluation of the wind energy potential required to design a wind turbine, so it is important to estimate unknown parameters of wind speed distribution. In this paper, Gumbel distribution is used in modelling wind speed data, and alternative robust estimation methods to estimate its parameters are considered. The methodologies used to obtain the estimators of the parameters are least absolute deviation, weighted least absolute deviation, median/MAD and least median of squares. The performances of the estimators are compared with traditional estimation methods (i.e., maximum likelihood and least squares) according to bias, mean square deviation and total mean square deviation criteria using a Monte-Carlo simulation study for the data with and without outliers. The simulation results show that least median of squares and median/MAD estimators are more efficient than others for data with outliers in many cases. However, median/MAD estimator is not consistent for location parameter of Gumbel distribution in all cases. In real data application, it is firstly demonstrated that Gumbel distribution fits the daily mean wind speed data well and is also better one to model the data than Weibull distribution with respect to the root mean square error and coefficient of determination criteria. Next, the wind data modified by outliers is analysed to show the performance of the proposed estimators by using numerical and graphical methods.