• Title/Summary/Keyword: Monte Carlo simulation(MCS)

Search Result 201, Processing Time 0.022 seconds

Electron Energy Distribution Function in SF6-He Gas by Simulation (시뮬레이션에 의한 SF6-He 혼합기체에서 전자에너지 분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.19-23
    • /
    • 2014
  • This paper describes the electron transport characteristics in $SF_6$-He gas calculated E/N values 0.1~700[Td] by the Monte Carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters obtained by TOF method. This study gained the values of the electron swarm parameters such as the electron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients for $SF_6$-He gas at a range of E/N. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Numerical Analysis and Simulation for the Pricing of Bond on Term-Structure Interest Rate model with Jump (점프 항을 포함하는 이자율 기간구조 모형의 채권 가격결정을 위한 수치적 분석 및 시뮬레이션)

  • Kisoeb Park
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.93-99
    • /
    • 2024
  • In this paper, we derive the Partial Differential Bond Price Equation (PDBPE) by using Ito's Lemma to determine the pricing of bond on term-structure of interest rate (TSIR) model with jump. From PDBPE, the Maclaurin series (MS) and the moment-generating function (MGF) for the exponential function are used to obtain a numerical solution (NS) of the bond prices. And an algorithm for determining bond prices using Monte Carlo Simulation (MCS) techniques is proposed, and the pricing of bond is determined through the simulation process. Comparing the results of the implementation of the above two pricing methods, the relative error (RE) is obtained, which means the ratio of NS and MCS. From the results, we can confirm that the RE is less than around 2.2%, which means that the pricing of bond can be predicted very accurately using the proposed algorithms as well as numerical analysis. Moreover, it was confirmed that the bond price obtained using the MS has a relatively smaller error than the pricing of bond obtained by using the MGF.

The Confidence Estimation of MOI Measurement Equipment using Uncertainty Analysis (불확도 분석을 이용한 관성모멘트 측정장비의 신뢰도평가)

  • Kim, KwangRo;Kang, HuiWon;Shul, ChangWon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.53-57
    • /
    • 2018
  • The Monte Carlo simulation (MCS) method and the Guide to the Expression of Uncertainty in Measurement (GUM) are the most widely used approaches for uncertainty estimation. In this paper, MCS and GUM were used to estimate the confidence of MOI measurement equipment developed in-house. According to the results, the GUM estimated uncertainty was slightly underestimated compared to the MCS method. This difference is due to the approximation used by GUM. MOI uncertainties estimated by both methods were less than 1% of the estimate, which shows the high measurement reliability of the developed MOI measurement system.

Ionization and Diffusion Coefficients in CH4 Gas by Simulation (시뮬레이션에 의한 CH4 기체의 전리 및 확산계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.317-321
    • /
    • 2014
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron Ionization and diffusion Coefficients in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$^{\circ}K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Probabilistic shear-lag analysis of structures using Systematic RSM

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2005
  • In the shear-lag analysis of structures deterministic procedure is insufficient to provide complete information. Probabilistic analysis is a holistic approach for analyzing shear-lag effects considering uncertainties in structural parameters. This paper proposes an efficient and accurate algorithm to analyze shear-lag effects of structures with parameter uncertainties. The proposed algorithm integrated the advantages of the response surface method (RSM), finite element method (FEM) and Monte Carlo simulation (MCS). Uncertainties in the structural parameters can be taken into account in this algorithm. The algorithm is verified using independently generated finite element data. The proposed algorithm is then used to analyze the shear-lag effects of a simply supported beam with parameter uncertainties. The results show that the proposed algorithm based on the central composite design is the most promising one in view of its accuracy and efficiency. Finally, a parametric study was conducted to investigate the effect of each of the random variables on the statistical moment of structural stress response.

Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Kartal, Murat Emre
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.499-518
    • /
    • 2009
  • The present paper investigates the stochastic seismic responses of steel structure systems with Partially Restrained (PR) connections by using Perturbation based Stochastic Finite Element (PSFEM) method. A stiffness matrix formulation of steel systems with PR connections and PSFEM and MCS formulations of structural systems are given. Based on the formulations, a computer program in FORTRAN language has been developed, and stochastic seismic analyses of steel frame and bridge systems have been performed for different types of connections. The connection parameters, material and geometrical properties are assumed to be random variables in the analyses. The Kocaeli earthquake occurred in 1999 is considered as a ground motion. The connection parameters, material and geometrical properties are considered to be random variables. The efficiency and accuracy of the proposed SFEM algorithm are validated by comparison with results of Monte Carlo simulation (MCS) method.

Optimal Design of Inverse Electromagnetic Problems with Uncertain Design Parameters Assisted by Reliability and Design Sensitivity Analysis

  • Ren, Ziyan;Um, Doojong;Koh, Chang-Seop
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.266-272
    • /
    • 2014
  • In this paper, we suggest reliability as a metric to evaluate the robustness of a design for the optimal design of electromagnetic devices, with respect to constraints under the uncertainties in design variables. For fast numerical efficiency, we applied the sensitivity-assisted Monte Carlo simulation (S-MCS) method to perform reliability calculation. Furthermore, we incorporated the S-MCS with single-objective and multi-objective particle swarm optimization algorithms to achieve reliability-based optimal designs, undertaking probabilistic constraint and multi-objective optimization approaches, respectively. We validated the performance of the developed optimization algorithms through application to the optimal design of a superconducting magnetic energy storage system.

Electron Transport Characteristics in $SiH_4$ by MCS-BEq (MCS-BEq에 의한 $SiH_4$ 전자수송특성(電子輸送特性))

  • Seong, Nak-Jin;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.97-100
    • /
    • 2005
  • This paper describes the electron transport characteristics in SiH4 has been analysed over the E/N range 0.5${\sim}$300[Td] and Pressure value 0.5, 1, 2.5 [Torr] by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, diffusion coefficient, electron ionization, mean energy and the electron energy distribution function. The electron energy distribution function has been analysed in $SiH_4$ at E/N=30, 50[Td] for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Boltzmann equation and Monte carlo simulation have been compared with experimental data by Pollock, Ohmori, cottrell and Walker.

  • PDF

Stochastic finite element method homogenization of heat conduction problem in fiber composites

  • Kaminski, Marcin
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.373-392
    • /
    • 2001
  • The main idea behind the paper is to present two alternative methods of homogenization of the heat conduction problem in composite materials, where the heat conductivity coefficients are assumed to be random variables. These two methods are the Monte-Carlo simulation (MCS) technique and the second order perturbation second probabilistic moment method, with its computational implementation known as the Stochastic Finite Element Method (SFEM). From the mathematical point of view, the deterministic homogenization method, being extended to probabilistic spaces, is based on the effective modules approach. Numerical results obtained in the paper allow to compare MCS against the SFEM and, on the other hand, to verify the sensitivity of effective heat conductivity probabilistic moments to the reinforcement ratio. These computational studies are provided in the range of up to fourth order probabilistic moments of effective conductivity coefficient and compared with probabilistic characteristics of the Voigt-Reuss bounds.

Prediction of Dynamic Line Rating Based on Thermal Risk Probability by Time Series Weather Models (시계열 기상모델을 이용한 열적 위험확률 기반 동적 송전용량의 예측)

  • Kim, Dong-Min;Bae, In-Su;Cho, Jong-Man;Chang, Kyung;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.273-280
    • /
    • 2006
  • This paper suggests the method that forecasts Dynamic Line Rating (DLR). Thermal Overload Risk Probability (TORP) of the next time is forecasted based on the present weather conditions and DLR value by Monte Carlo Simulation (MCS). To model weather elements of transmission line for MCS process, this paper will propose the use of statistical weather models that time series is applied. Also, through the case study, it is confirmed that the forecasted TORP can be utilized as a criterion that decides DLR of next time. In short, proposed method may be used usefully to keep security and reliability of transmission line by forecasting transmission capacity of the next time.