• Title/Summary/Keyword: Monotonic algorithm

Search Result 82, Processing Time 0.023 seconds

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate Monotonic on Multiprocessor Platforms

  • Senobary, Saeed;Naghibzadeh, Mahmoud
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.43-56
    • /
    • 2014
  • Semi-partitioned scheduling is a new approach for allocating tasks on multiprocessor platforms. By splitting some tasks between processors, semi-partitioned scheduling is used to improve processor utilization. In this paper, a new semi-partitioned scheduling algorithm called SS-DRM is proposed for multiprocessor platforms. The scheduling policy used in SS-DRM is based on the delayed rate monotonic algorithm, which is a modified version of the rate monotonic algorithm that can achieve higher processor utilization. This algorithm can safely schedule any system composed of two tasks with total utilization less than or equal to that on a single processor. First, it is formally proven that any task which is feasible under the rate monotonic algorithm will be feasible under the delayed rate monotonic algorithm as well. Then, the existing allocation method is extended to the delayed rate monotonic algorithm. After that, two improvements are proposed to achieve more processor utilization with the SS-DRM algorithm than with the rate monotonic algorithm. According to the simulation results, SS-DRM improves the scheduling performance compared with previous work in terms of processor utilization, the number of required processors, and the number of created subtasks.

Monotonic and Parallelizable Algorithm for Simultaneous Reconstruction of Activity/Attenuation using Emission data in PET

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.299-309
    • /
    • 2001
  • In PET(Positron Emission Tomography), it is necessary to use transmission scan data in order to estimate the attenuation map. Recently, there are several empirical studies in which one might be able to estimate attenuation map and activity distribution simultaneously with emissive sinogram alone without transmission scan. However, their algorithms are based on the model in which does not include the background counts term, and so is unrealistic. If the background counts component has been included in the model, their algorithm would introduce non-monotonic reconstruction algorithm which results in vain in practice. in this paper, we develop a monotonic and parallelizable algorithm for simultaneous reconstruction of both characteristics and present the validity through some simulations.

  • PDF

MONOTONIC OPTIMIZATION TECHNIQUES FOR SOLVING KNAPSACK PROBLEMS

  • Tran, Van Thang;Kim, Jong Kyu;Lim, Won Hee
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.611-628
    • /
    • 2021
  • In this paper, we propose a new branch-reduction-and-bound algorithm to solve the nonlinear knapsack problems by using general discrete monotonic optimization techniques. The specific properties of the problem are exploited to increase the efficiency of the algorithm. Computational experiments of the algorithm on problems with up to 30 variables and 5 different constraints are reported.

Determining Checkpoint Intervals of Non-Preemptive Rate Monotonic Scheduling Using Probabilistic Optimization (확률 최적화를 이용한 비선점형 Rate Monotonic 스케줄링의 체크포인트 구간 결정)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.120-127
    • /
    • 2011
  • Checkpointing is one of common methods of realizing fault-tolerance for real-time systems. This paper presents a scheme to determine checkpoint intervals using probabilistic optimization. The considered real-time systems comprises multiple tasks in which transient faults can happen with a Poisson distribution. Also, multi-tasks are scheduled by the non-preemptive Rate Monotonic (RM) algorithm. In this paper, we present an optimization problem where the probability of task completion is described by checkpoint numbers. The solution to this problem is the optimal set of checkpoint numbers and intervals that maximize the probability. The probability computation includes schedulability test for the non-preemptive RM algorithm with respect to given numbers of checkpoint re-execution. A case study is given to show the applicability of the proposed scheme.

Multimedia Process Scheduling Mechanism with Adaptive Rate Monotonic Algorithm (Adaptive Rate Monotonic 알고리즘을 이용한 멀티미디어 프로세서 스케줄링 기법)

  • ;Felix M. Villarreal
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.95-97
    • /
    • 1998
  • 본 논문에서는 멀티미디어 프로세서의 특성을 반영한 프로세서 스케줄러를 설계하고 실제 구현을 통해 성능을 분석하였다. 제안한 프로세서 스케줄링 기법은 주기가 짧은 프로세서에 높은 우선순위를 부여하지만 우선 순위를 결정하기 위한 주기를 이전 작업의 주기에 위해 동적으로 계산하고 프로세서의 수행 중의 중단을 제한함으로써 Rate Monotonic 알고리즘을 동적이고 비중단적으로 수정하였다. 제안한 스케줄링 기법은 BSD를 기초로 한 운영체제인 FreeBSD 상에서 구현하여 스케줄링의 성능을 평가하였다. 제안한 스케줄러에 대한 실험에서 FreeBSD 스케줄러에 비해 멀티미디어의 실시간적인 특성을 만족하면서 수행 중의 동적인 상황 변화에 적응된 결과를 보인다.

  • PDF

FUZZY REGRESSION MODEL WITH MONOTONIC RESPONSE FUNCTION

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.973-983
    • /
    • 2018
  • Fuzzy linear regression model has been widely studied with many successful applications but there have been only a few studies on the fuzzy regression model with monotonic response function as a generalization of the linear response function. In this paper, we propose the fuzzy regression model with the monotonic response function and the algorithm to construct the proposed model by using ${\alpha}-level$ set of fuzzy number and the resolution identity theorem. To estimate parameters of the proposed model, the least squares (LS) method and the least absolute deviation (LAD) method have been used in this paper. In addition, to evaluate the performance of the proposed model, two performance measures of goodness of fit are introduced. The numerical examples indicate that the fuzzy regression model with the monotonic response function is preferable to the fuzzy linear regression model when the fuzzy data represent the non-linear pattern.

Enhanced Technique for Performance in Real Time Systems (실시간 시스템에서 성능 향상 기법)

  • Kim, Myung Jun
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.103-111
    • /
    • 2017
  • The real time scheduling is a key research area in high performance computing and has been a source of challenging problems. A periodic task is an infinite sequence of task instance where each job of a task comes in a regular period. The RMS (Rate Monotonic Scheduling) algorithm has the advantage of a strong theoretical foundation and holds out the promise of reducing the need for exhaustive testing of the scheduling. Many real-time systems built in the past based their scheduling on the Cyclic Executive Model because it produces predictable schedules which facilitate exhaustive testing. In this work we propose hybrid scheduling method which combines features of both of these scheduling algorithms. The original rate monotonic scheduling algorithm didn't consider the uniform sampling tasks in the real time systems. We have enumerated some issues when the RMS is applied to our hybrid scheduling method. We found the scheduling bound for the hard real-time systems which include the uniform sampling tasks. The suggested hybrid scheduling algorithm turns out to have some advantages from the point of view of the real time system designer, and is particularly useful in the context of large critical systems. Our algorithm can be useful for real time system designer who must guarantee the hard real time tasks.

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).

Nonlinear numerical simulation of RC columns subjected to cyclic oriented lateral force and axial loading

  • Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.745-765
    • /
    • 2015
  • A nonlinear Finite Element (FE) algorithm is proposed to analyze the Reinforced Concrete (RC) columns subjected to Cyclic Loading (CL), Cyclic Oriented Lateral Force and Axial Loading (COLFAL), Monotonic Loading (ML) or Oriented Pushover Force and Axial Loading (OPFAL) in any direction. In the proposed algorithm, the following parameters are considered: uniaxial behavior of concrete and steel elements, the pseudo-plastic hinge produced in the critical sections, and global behavior of RC columns. In the proposed numerical simulation, the column is discretized into two Macro-Elements (ME) located between the pseudo-plastic hinges at critical sections and the inflection point. The critical sections are discretized into Fixed Rectangular Finite Elements (FRFE) in general cases of CL, COLFAL or ML and are discretized into Variable Oblique Finite Elements (VOFE) in the particular cases of ML or OPFAL. For pushover particular case, a fairly fast converging and properly accurate nonlinear simulation method is proposed to assess the behavior of RC columns. The proposed algorithm has been validated by the results of tests carried out on full-scale RC columns.

Optimal Checkpoint Placement for Real-Time Systems with Multi-Tasks Having Deadlines Longer Than Periods (데드라인이 주기보다 긴 멀티 태스크를 가진 실시간 시스템을 위한 최적 체크포인트 배치)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.148-154
    • /
    • 2012
  • For a successful checkpointing strategy, we should place checkpoints so as to optimize fault-tolerance capability of real-time systems. This paper presents a novel scheme of checkpoint placement for real-time systems with periodic multi-tasks. Under the influence of transient faults, multi-tasks are scheduled by the Rate Monotonic (RM) algorithm. The optimal checkpoint intervals are derived to maximize the probability of task completion. In particular, this paper is concerned about the general case that the deadline of a task is longer than the period. Compared with the special condition that the deadline is equal to or less than the period, this general case causes a more complicate test procedure for schedulability of the RM algorithm with respect to a given set of checkpoint re-execution vectors. The probability of task completion is also derived in a more complex form. A case study is given to show the applicability of the proposed scheme.