Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).
References
- P.N. Anh and L.D. Muu, Lagrangian duality algorithms for finding a global optimal solution to mathematical programs with affine equilibrium constraints, Nonlinear. Dynam. Syst. Theory, 6 (2006), 225-244.
- P.N. Anh and L.D. Muu, Contraction mapping fixed point algorithms for multivalued mixed variational inequalities on network, in Optimization with Multivalued Mappings, Eds: S. Dempe and K. Vyacheslav, Springer, 2006.
- P.N. Anh and T.V. Thang, Optimality condition and quasi-conjugate duality with zero gap in nonconvex optimization, Optim. Letters, 14 (2020), 2021-2037. https://doi.org/10.1007/s11590-019-01523-9
- M.W. Cooper, The use of dynamic programming for the solution of a class of nonlinear programming problems, Nav. Res. Logist. Q., 27 (1980), 89-95. https://doi.org/10.1002/nav.3800270108
- O.K. Gupta and A. Ravindran, Branch and bound experiments in convex nonlinear integer programming, Manag. Sci. 31 (1985), 1533-1546. https://doi.org/10.1287/mnsc.31.12.1533
- J.K.Kim, T.M. Tuyen and M.T. Ngoc Ha, Two projection methods for solving the split common fixed point problem with multiple output sets in Hilbert spaces, Numerical Funct. Anal. Optim., 42 (8)(2021), 973-988, https://doi.org/10.1080/01630563.2021.1933528
- F. Korner, A hybrid method for solving nonlinear knapsack problems, Eur. J. Oper. Res. 38 (1989), 238-241. https://doi.org/10.1016/0377-2217(89)90109-4
- D. Li and X.L. Sun, Success guarantee of dual search in nonlinear integer programming: P-th power Lagrangian method, J. Glob. Optim., 18 (2000), 235-254. https://doi.org/10.1023/a:1008325116400
- D. Li and X.L. Sun, Nonlinear Integer Programming, Springer, New York, 2006.
- D. Li and D.J. White, P-th power Lagrangian method for integer programming, Ann. Oper. Res., 98 (2000), 151-170. https://doi.org/10.1023/A:1019252306512
- D. Li, X.L. Sun, J. Wang and K.I.M. McKinnon, Convergent Lagrangian and domain cut method for nonlinear knapsack problems, Comput. Optim. Appl., 42 (2009), 67-104. https://doi.org/10.1007/s10589-007-9113-1
- R.E. Marsten and T.L. Morin, A hybrid approach to discrete mathematical programming, Math. Program., 14 (1978), 21-40. https://doi.org/10.1007/BF01588949
- P.T. Thach and T.V. Thang, Problems with rerource allocation constraints and optimization over the efficient set, J. Glob. Optim., 58 (2014), 481-495. https://doi.org/10.1007/s10898-013-0055-0
- T.V. Thang, Conjugate duality and optimization over weakly efficient set, Acta Math. Vietnamica, 42(2) (2017), 337-355. https://doi.org/10.1007/s40306-016-0182-z
- J.P. Penot and M. Volle, Quasi-conjugate duality, Math. Oper. Res., 15(4) (1990), 597-625. https://doi.org/10.1287/moor.15.4.597
- T.D. Quoc, P.N. Anh and L.D. Muu, Dual extragradient algorithms to equilibrium problems, J. Glob. Optim., 52 (2012), 139-159. https://doi.org/10.1007/s10898-011-9693-2
- T. Rockafellar, Conjugate duality and optimization, Siam for Industrial and Applied Mathematics Philadelphia, University of Washington, Seattle, 1974.
- N.Z. Shor, Minimization Methods for Non-differentiable Functions, Springer Series in Computational Mathematics., Springer, 1985.
- T. V. Thang and N. D. Truong, Conjugate duality for concave maximization problems and applications, Nonlinear Funct. Anal. Appl., 25(1) (2020), 161-174.
- H. Tuy, Monotonic optimization: Problems and solution approaches, SIAM J. Optim., 11 (2000), 464-494. https://doi.org/10.1137/S1052623499359828
- H. Tuy, M. Minoux and N.T. Hoai-Phuong, Discrete Monotonic Optimization With Application to A Discrete Location Problem, SIAM J. Optim., 17 (2006), 78-97. https://doi.org/10.1137/04060932X