DOI QR코드

DOI QR Code

MONOTONIC OPTIMIZATION TECHNIQUES FOR SOLVING KNAPSACK PROBLEMS

  • Received : 2020.11.23
  • Accepted : 2021.03.20
  • Published : 2021.09.15

Abstract

In this paper, we propose a new branch-reduction-and-bound algorithm to solve the nonlinear knapsack problems by using general discrete monotonic optimization techniques. The specific properties of the problem are exploited to increase the efficiency of the algorithm. Computational experiments of the algorithm on problems with up to 30 variables and 5 different constraints are reported.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

  1. P.N. Anh and L.D. Muu, Lagrangian duality algorithms for finding a global optimal solution to mathematical programs with affine equilibrium constraints, Nonlinear. Dynam. Syst. Theory, 6 (2006), 225-244.
  2. P.N. Anh and L.D. Muu, Contraction mapping fixed point algorithms for multivalued mixed variational inequalities on network, in Optimization with Multivalued Mappings, Eds: S. Dempe and K. Vyacheslav, Springer, 2006.
  3. P.N. Anh and T.V. Thang, Optimality condition and quasi-conjugate duality with zero gap in nonconvex optimization, Optim. Letters, 14 (2020), 2021-2037. https://doi.org/10.1007/s11590-019-01523-9
  4. M.W. Cooper, The use of dynamic programming for the solution of a class of nonlinear programming problems, Nav. Res. Logist. Q., 27 (1980), 89-95. https://doi.org/10.1002/nav.3800270108
  5. O.K. Gupta and A. Ravindran, Branch and bound experiments in convex nonlinear integer programming, Manag. Sci. 31 (1985), 1533-1546. https://doi.org/10.1287/mnsc.31.12.1533
  6. J.K.Kim, T.M. Tuyen and M.T. Ngoc Ha, Two projection methods for solving the split common fixed point problem with multiple output sets in Hilbert spaces, Numerical Funct. Anal. Optim., 42 (8)(2021), 973-988, https://doi.org/10.1080/01630563.2021.1933528
  7. F. Korner, A hybrid method for solving nonlinear knapsack problems, Eur. J. Oper. Res. 38 (1989), 238-241. https://doi.org/10.1016/0377-2217(89)90109-4
  8. D. Li and X.L. Sun, Success guarantee of dual search in nonlinear integer programming: P-th power Lagrangian method, J. Glob. Optim., 18 (2000), 235-254. https://doi.org/10.1023/a:1008325116400
  9. D. Li and X.L. Sun, Nonlinear Integer Programming, Springer, New York, 2006.
  10. D. Li and D.J. White, P-th power Lagrangian method for integer programming, Ann. Oper. Res., 98 (2000), 151-170. https://doi.org/10.1023/A:1019252306512
  11. D. Li, X.L. Sun, J. Wang and K.I.M. McKinnon, Convergent Lagrangian and domain cut method for nonlinear knapsack problems, Comput. Optim. Appl., 42 (2009), 67-104. https://doi.org/10.1007/s10589-007-9113-1
  12. R.E. Marsten and T.L. Morin, A hybrid approach to discrete mathematical programming, Math. Program., 14 (1978), 21-40. https://doi.org/10.1007/BF01588949
  13. P.T. Thach and T.V. Thang, Problems with rerource allocation constraints and optimization over the efficient set, J. Glob. Optim., 58 (2014), 481-495. https://doi.org/10.1007/s10898-013-0055-0
  14. T.V. Thang, Conjugate duality and optimization over weakly efficient set, Acta Math. Vietnamica, 42(2) (2017), 337-355. https://doi.org/10.1007/s40306-016-0182-z
  15. J.P. Penot and M. Volle, Quasi-conjugate duality, Math. Oper. Res., 15(4) (1990), 597-625. https://doi.org/10.1287/moor.15.4.597
  16. T.D. Quoc, P.N. Anh and L.D. Muu, Dual extragradient algorithms to equilibrium problems, J. Glob. Optim., 52 (2012), 139-159. https://doi.org/10.1007/s10898-011-9693-2
  17. T. Rockafellar, Conjugate duality and optimization, Siam for Industrial and Applied Mathematics Philadelphia, University of Washington, Seattle, 1974.
  18. N.Z. Shor, Minimization Methods for Non-differentiable Functions, Springer Series in Computational Mathematics., Springer, 1985.
  19. T. V. Thang and N. D. Truong, Conjugate duality for concave maximization problems and applications, Nonlinear Funct. Anal. Appl., 25(1) (2020), 161-174.
  20. H. Tuy, Monotonic optimization: Problems and solution approaches, SIAM J. Optim., 11 (2000), 464-494. https://doi.org/10.1137/S1052623499359828
  21. H. Tuy, M. Minoux and N.T. Hoai-Phuong, Discrete Monotonic Optimization With Application to A Discrete Location Problem, SIAM J. Optim., 17 (2006), 78-97. https://doi.org/10.1137/04060932X