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Monotonic and Parallelizable Algorithm for Simultaneous
Reconstruction of Activity/Attenuation
using Emission Data in PETD

Seung Gu Kim?2)

Abstract

In PET(Positron Emission Tomography), it is necessary to use transmission scan
data in order to estimate the attenuation map. Recently, there are several empirical
studies in which one might be able to estimate attenuation map and activity
distribution simultaneously with emissive sinogram alone without transmission scan.
However, their algorithms are based on the model in which does not include the
background counts term, and so is unrealistic. If the background counts component
has been included in the model, their algorithm would introduce non-monotonic
reconstruction algorithm which results in vain in practice. In this paper, we develop a
monotonic and parallelizable algorithm for simultaneous reconstruction of both
characteristics and present the validity through some simulations.

Keywords : EM algorithm, PET reconstruction, Activity/Attenuation, Monotonic algorithm,
Background counts

1. Introduction

During about a decade, reconstruction problems of PET or SPECT(single photon emissive
computed tomography) have become an important issue in applied statistics. The emissive
medical imaging devices like PET or SPECT may give two different images of which one is
activity distribution and the other is attenuation map. For reconstruction of the activity
distribution like Natter(1993), Moore et. al.(1997), and Welsh(1997), because most of partial
reconstruction  algorithms come from the ML-EM(maximum likelihood expectation
maximization) algorithm of Lange and Carson(1984)’s or Shepp and Vardi(1982)'s, it needs
transmission scan before or after the end of emission scan in order to carry out attenuation
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correction.

Recently, simultaneous reconstruction of activity distribution and attenuation map becomes
to be required in PET because it does not use transmission scan and therefore the patient
immobile time until scan is done is reduced. Among the several techniques, Nuyts et al(1999)
are found to be the statistically reasonable approaches. However, their techniques are based on
the model in which does not include the background counts component, and so is unrealistic
because there does not exist PET device without bcakground events(eg. random coincidence,
Compton scattering, crosstalks etc. ). If the background counts component has been included
in the model, their approaches would introduce non-monotonic algorithm which results in vain.
The background counts that is must be occurred in PET although it is weaker than in
SPECT. But it is well known that the background counts components are able to be estimated
in accurate and is very important information to reconstruct the finer image.

Reconstruction algorithm should have several important features;

* the monotonicity of the convergence
* the global convergence

* the separability of the parameters

* the positivity of the estimates

In this paper, the goal is to provide a algorithm for simultaneous reconstruction activity and
attenuation when the background counts component is included in the measurement model in
PET, which satisfies above conditions. Next section presents a measurement model of PET
and explains a non-concavity problem of an objective function, and in section 3, we provides
a technique via the EM algorithm to avoid this problem with attention to the separability
conditions. In section 4, a simulation is provided to illustrate the algorithm developed in this
work to be monotonic and efficient in practical aspect.

2 Basic Notations and Problems

In PET, the observation counts at the ¢th projection follows

y;~ Poisson(y; +¢€;), i=1,,N 2.1
, Where

ui= uilai ) = TsyBrexn(-Zlya;) (2.2)
. And a= [al,"',ap]T and 8= [Bl,"-,BP]T represent the (linear) attenuation map and the

activity distribution respectively. The elements of the known system matrixes {s;}and {/;}
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indicate respectively the jth pixel's sensitivity and effective intersection length and &;

represents a mean of the background counts component at the th projection. And all of the
symbols expressed in (2.1) and (2.2) are assumed to be nonnegative.

Qur goal is to estimate ¢ and /£ simultaneously using the observation sinogram
v={y,,--,yn]. Because two system matrixes are ill-posed and N might be not much

larger than P, the penalized log-likelihood
L,(8)=L(8)—AJ(8) (2.3)

is maximized with respect to 8= [a; 8] instead naive log-likelihood L is maximized in order
to regularize the estimation. Here the constant A> (0 and the penalty function J is assumed

to be strictly convex in order to get global maximum for @. In addition, we define

J(8)=J(a,B)=J(a) = ;],-(a,») (2.4)

suppressing the activity A. This definition intends that the penalty shall influence on only

attenuation a and that a bias of the estimates of B due to regularization shall be removed
because estimates of activity distribution is a major diagnosis tool rather than attenuation map

in medical. And the function J is assumed to be separated into each of pixels. In this work,
we use a roughness penalty function

J(a) = 2}_3(1/2) kEZa IRICTT) (2.5)

, where J; represents the set of the first order neighbors of j, &, is a value 1 for

horizontal and vertical a}'s site and zero otherwise, and

r(x) = &*{Ix/ &l — log (1 +1x/81)} (2.6)

and a constant &> (0 that controls the resolution of reconstruct image preserving edge. Its
properties is well explained in Fessler et. al.(1997).
Consider the log-likehhood ignoring its constant terms

L(g) = Z{-(#1(0)+6,')+ yilog (1;(0) +¢e;) )}

= th( 231';5;‘» ;l,—,-a,-)

(2.7

, Where

hi(my,my) = ~{mexp (-my) +¢&;} + y; log{m;exp(-m,) + ¢;}. (2.8)
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From the second partial differentiates of the function k; those are

92 exp(-my) 2
I hi(m1,m2)=’yi[ m, exp(my) + &, ] , 29
e;m, exp(-my)
m hi(my, my) = ~myexp(-my) +y; (mmy exp(-my) +¢,)? ] (2.10)
and
—az"_h‘(m m)=—az———h~(m my)
Omdmy T2 Omgdmy TN TR
_ e exp(-my)
= exp(-myp) — y; (myexp(-my) + E,-)Z ]

It is important to note that the two-valued function #; is not concave for the argument
(m;,my), which implies that #%; is not concave for (a, 3) either since m, and m, are

linear with @ and B respectively. At hence the log-likelihood function L and the penalized

log-likelihood function L, is not concave for 8=1{a;8] in turn. From (29) and (2.10), we
find that if e, is zero, h; is partially concave in the sense that it is concave for one
argument when the other is given. However, note that k; is partially concave for m; but

not for m, unless &; is zero, so that
B™ = argmax g L;(e", Ble", B”) = argmax z L(a", Bla”, B") (211
increase the L; but
" = argmax ,L;(a, 8"|a", ") = argmax ,{L(a, 8"|a", 8") — AJ(a)} (2.12)

not guarantee to increase it monotonically. As a results, this partial update strategy dose not
provide the monotonicity in convergence.

3. Techniques for Surrogate of L;

We have to achieve two tasks; the first is to provide a technique to estimate {f;} separately.
There is no need to find a monotonic algorithm for f;s because the [)’”H in (2.8) itself

increase the L, in monotonic, the second is to estimate {e;} not only be monotonic but also

be separated,
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3.1 Separability Technique for Activity Estimation

Postulate y;,= 2,x;+ e;, where x; and e; are independent and follows
7

x;~ Poisson (g;;) and e;~ Poisson (¢;) @3.1)

respectively indicating (x;,''-, x;p, €;) the complete data and y; the incomplete data and
1= 8;B; exp <—§ l,»ka,,).
Then ignoring constant terms
Q(a”, Bla", ") = Ellogf(x,e;a", B)la", 8", y]
= E[logf(x;a", B)la", 8", y1E[log f(e)la", 8", ¥]
o« E[log f(x;a", B)la", 8", y]

=2 Z {-siBjexp (—g lxh ) + 7 log (=58, (3.2)
, Where
n n pn #?_
xii:E[xijly,a’ B ]=yi(m) . (3.3

and g =p(a”, B8"). From Q(a", Bla", ") =0 the update algorithm is given as

Zx.’ﬁ-
n+l
1 n 1 (34)
j ZS,,CXD( ;l,ka;') 2!—‘;( + ) / 2#1

L j=1,,P

, which increase monotonically @;, and so the penalized log-likelihood L ;.
Note that if &;=0, then the algorithm (3.4) becomes Lange and Carson(1984)'s ML-EM

algorithm when the activity distribution is solely(not partially) estimated.
3.2 Monotonicity and Separability Technique for Attenuation Estimation

It has becomes to be conventional for many authors(e.g Fessler et. al.,1997) to use the
De Pierro(1995)’s convexity technique to provide a separable algorithm to estimate attenuation

map . It begins from setting
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Zl,,a, Z‘.w,,

§ a}’)+;ll-ka2

for the weights 0< w;<1 and > w; =1, and then the Jensen's inequality says that for a
’

concave function f it holds

f(gz,,aj) - (2,3 [ a—a,)+21,kak])
2210,«, (

(35)

(af,—-af, )+Zlkak) .

Wy

For separability, one cannot directly apply the inequality (3.5) to the log likelihood L
because the function #A; is not concave as long as &; terms is present as it has been
mentioned in previous section. So that, not only for the separable update but for the
monotonic convergence, we need a surrogate function of the L( so the L) that is always

concave regardless of ¢;.

To avoid the nonconcavity problems due to &; term in %;, one can use the paraboloidal

technique(Erdogan and Fessler, 1999 and Sotthivirat and Fessler, 2000). But in this paper, we
choose the Kim(1999)'s the EM technique because the latter is simpler and more statistically
reasonable than the former in nature. While the paraboloidal surrogate use a quadratic
approximation of log likelihood based on numerically analytic approach, the Kim’'s technique
provide a surrogate of log likelihood using EM property.

Consider

new

@™ = arg max ,Q,(a, f*la", 8") = arg max ,{Q(e, £"|a”, B")—AJ(a)} (36)

, then we know that " should increase the eq. (2.3) monotonically by the property of EM.
Postulate y; = x;+ ¢;, where x; and e; are independent and follows

x;~ Poisson (#;) and e;~ Poisson (&;) (35)

respectively. Here (x;,e;) are regarded as the complete data and y; to the incomplete data,

then the evaluation function for the complete data given v, in similar to (3.2), is

Q(e,B*a", 8") = Ellogf(x;a, )\ y,a", B"] = Z.gi( Zlﬁa,-) (3.7
, where

gi(m)=- gsﬂeﬁ;’ exp (-m) — x'm (3.8)
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ignoring constant terms and

T B
x} = E[x;ly,a", "] y,( Py ) (39)

It is necessary to note that the function g; is concave regardless whether ¢&; is zero or not,
and Q and @, are also concave in turn. Hence, the a™of (3.6) will monotonically increase

@, and so L,.
Now, applying De Pierro’s technique to (3.7),

Qa.g"la", 8") = T Ttia)

> Z?w,;gi( u])’ (a,-—a;')+2;_‘.1,~,,az) (3.10)
= ;¢,~(a;|a”)5¢(ala”)

ignoring constant terms, where

8,(ala") = - Doy Tsubl) exv (- (2= )= Lluai)

W

—(a,-—a;')Zy,-z,-,-(—E—) .

(3.11)
/1:’+ €;

So far in this section, we find the monotonic and separable function ¢{(ale”) that is

surrogate the L, which implies that

2]t = argmax {¢(ele”) — AJ(e)} = arg max ,{¢,(a;la") —AJ;(a;))}
, j=1,-,P (3.12)

increase L, in monotonic. Therefore, using one-step Newton-Raphson method, we provide a

gradient algorithm

$i(al)—AJ;(a])
—{ 8;e)=2Ti(e} |,

+
2j" = |af

ji=1,-,P (3.13)

, where one dot and double dot indicate the first and second partial derivatives at a; = o}

respectively, so that
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é,(al) = 2(1— ﬁ—e— )z,-,-#:' , (3.14)

bi(a}) = -2 ljul fwy = -2 D lhu! (3.15)

i

in case that we choose wy =[5/ 241% and

7 ” n n aj —ay
Ji(al) = kEEBI (a,——ak)/(1+ —ia—i ) (3.16)
n n -1
-, a;—a
Ji(al) = k§a; (1+ —La——” ) 3.17)
and the operator [], means for any real valued function d
x d(x)<0
[d(x) ]+ = (3.18)
dx), dx)=0

Note that it guarantees to satisfy the positivity condition whenever one put the initial

estimates to be non-zero, and that it never break the monotonicity condition since it choose

a’tl = a7 if d(a) is negative, hence it would not decrease the L,.

4. Simulation Study

In this section, we investigate whether a couple of algorithm (3.4) and (3.14) is
monotonically converge to some reconstruction image. and it provides actually the locational
information of disease positions presumed in real image. An experiment use a coupe of
artificial images. 64 X64 attenuation map image, A. in Figure 1, simulates a human thorax in
which the body, the heart, the lung, the spine and the tubes with the attenuation coefficients
0.030, 0.050, 0.050, 0.120 and 0.070 respectively are included. And

s T N
[ 4 h
, » Z
[Y I
., s
A. True Attenuation map B. True Activity distribution

Figure 1. 64 x64 Simulated Images that are inverted, ie., from
white to black and black to white in grey intensity.
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64 %64 activity distribution image, B. in Figure 1, simulates the concentration of
radiopharmaceutical on its own positions of disease( a larger tumor in the left lung and a
very small tumor in the right lung) and skin sources from which positron radiates to a pair
of outer detectors.

o ‘ — 1 n s A

Figure 2. Plot of L;(8")—L;(68°) with 30 iterations illustrating

the sequence of estimated image is quickly and monotonically
converged to a reconstructed image.

g ;a,mn(} i, gy
i 1'““] ‘ﬁnlmw i

Figure 3. 20 iterates of algorithm developed in this paper.
the Upper @ Attenuation Maps and the Lower @ Activity Distributions

It is assumed that photon counts are emitted by 1000 per a white pixel in image B. And
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the initial estimates of @ and B are used with the filtered back projection(FBP) image based
on a smoothed sinogram and with an uniform-valued image respectively. Observed photon

counts y;s are generated independently from Poisson distribution with mean g;+¢&; where
£; is also randomly generated for uniform distribution on [10,15]. And we choose &= 0.05 in

(3.16) and (3.17) and smoothing constant A= 6600 in (3.13).

Figure 2 confirms again that a couple of algorithm (3.4) and (3.14) developed in this paper
increase the penalized log-likelihood in monotonic and it illustrates convergence to a
reconstructed image is very quickly in iterations (and it takes less than 30 seconds until 20
iterations on Pentium III/600MH?Z).

It is very interesting to note that, in Figure 3, activity distribution converges faster than
attenuation does; we are able to recognize apparently it as actual activity distribution within 5
iterations while attenuation map is not apparent at even 20 iterations, which is saying that to
reconstruct activity distribution does not require excessively accurate information for
attenuation map in PET!

5. Conclusion and Further Study

This paper provides a simultaneous reconstruction algorithm for activity and attenuation
which guarantees to converge in monotonic when background counts terms is included in
measurement model of PET, and attempt to avoid non-monotonicity caused by background
counts using familiar EM surrogate but not paraboloidal surrogate of the Erdogan and
Fessler(1999)'s. Our method is also perform well in a simulation study and easier, simpler and
more reasonable in statistical aspects than paraboloidal technique.

This paper develop a simultaneous reconstruction algorithm in PET in which the
measurement model might be quite simpler than in SPECT. In (2.2), both projection of activity
and attenuation are separated independently, which makes the EM construction be easier. In
SPECT, however, every attenuation projection is associated by activity projection therefore
both are independent which is very complicate to construct EM surrogate. Our next work will
be to provide the simultaneous algorithm in SPECT via EM surrogate technique like this
paper did.
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