• Title/Summary/Keyword: Monolithic crown

Search Result 45, Processing Time 0.022 seconds

FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS (지르코니아 단일구조 전부도재관의 파절강도)

  • Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.157-164
    • /
    • 2006
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness(0.5 mm, 0.8 mm, 1.1 mm) and IPS Empress II ceramic crown of 1.5 mm thickness. Material and method: Eight crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system(Kavo, Germany) and eight Empress II crowns were made from silicone mold and wax pattern. Each crown group was finished in accordance with the specific manufacturer s instruction. All crowns were luted to the metal dies using resin cement and mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test(p<.05) were applied to the data. Results and Conclusion: 1. The fracture strength of the zirconia monolithic all-ceramic crown was higher thickness increased(p<.05). 2 The fracture strength of 1.1 mm thickness zirconia monolithic all-ceramic crown was higher than the fracture strength of 1.5 mm thickness IPS Empress II crown(p<.05). 3. The fracture strength of 0.5 mm thickness zirconia monolithic all-ceramic crown exceeded maximum occlusal forces.

FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS AND METAL-CERAMIC CROWNS AFTER CYCLIC LOADING AND THERMOCYCLING (지르코니아 단일구조 전부도재관과 금속도재관의 파절강도 비교)

  • Lee, Sang-Min;Jeong, Hee-Chan;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.12-20
    • /
    • 2007
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness (0.5mm, 0.8mm, 1.1mm) and metal-ceramic crowns (1.0mm, 1.5mm) Material and method: Twelve crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system (Kavo, Germany) and twelve crowns for each of 2 metal-ceramic crown groups were made by the conventional method. All crowns were luted to the metal dies using resin cement. Half of the specimens were exposed to thermocycling ($5-55^{\circ}C$, 1 Hz) and cyclic loading (300,000 cycles, 50N). Subsequently, all crowns were mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test (P<.05) were used for statistical analysis of all groups, and paired t-test (P<.05) was followed for statistical comparison between each groups' fracture load before and after cyclic loading. Results: 1. The fracture strength of the zirconia monolithic crowns and the metal-ceramic crown increased as thickness increased (P<.05). 2. The cyclic loading and thermocycling significantly decreased the fracture strength of the zirconia monolithic crowns (P<.05). 3. The standard deviation of fracture strength of the zirconia monolithic crowns was very low. Conclusion: The fracture strength of the zirconia monolithic crowns for the posterior area tends to be higher with thickness increased and 0.8mm or over in thickness is recommended to have similar or over the fracture strength of metal-ceramic crowns.

Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

  • Ha, Seung-Ryong
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • PURPOSE. The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS. The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS. Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION. The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns.

Fabrication of a CAD/CAM monolithic zirconia crown to fit an existing partial removable dental prosthesis

  • Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Lee, Hyeonjong;Kim, Hyeong-Seob
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.329-332
    • /
    • 2016
  • Fabricating a surveyed prosthesis beneath an existing partial removable dental prosthesis (PRDP) is a challenging and time-consuming procedure. The computer-aided design/computer-assisted manufacturing (CAD/CAM) technology was applied to fabricate a retrofitted, surveyed zirconia prosthesis to an existing PRDP. CAD/CAM technology enabled precise and easy replication of the contour of the planned surveyed crown on the existing abutment tooth. This technology ensured excellent adaptation and fit of newly fabricated crown to the existing PRDP with minimal adjustments. In this case report, a seventy-year-old male patient presented with fractured existing surveyed crown. Because the existing PRDP was serviceable, new crown was fabricated to the existing PRDP.

An evaluation of the stress effect of different occlusion concepts on hybrid abutment and implant supported monolithic zirconia fixed prosthesis: A finite element analysis

  • Yesilyurt, Nilgün Gulbahce;Tuncdemir, Ali Riza
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.216-225
    • /
    • 2021
  • PURPOSE. The aim of this study is to evaluate the effects of canine guidance occlusion and group function occlusion on the degree of stress to the bone, implants, abutments, and crowns using finite element analysis (FEA). MATERIALS AND METHODS. This study included the implant-prosthesis system of a three-unit bridge made of monolithic zirconia and hybrid abutments. Three-dimensional (3D) models of a bone-level implant system and a titanium base abutment were created using the original implant components. Two titanium implants, measuring 4 × 11 mm each, were selected. The loads were applied in two oblique directions of 15° and 30° under two occlusal movement conditions. In the canine guidance condition, loads (100 N) were applied to the canine crown only. In the group function condition, loads were applied to all three teeth. In this loading, a force of 100 N was applied to the canine, and 200-N forces were applied to each premolar. The stress distribution among all the components of the implant-bridge system was assessed using ANSYS SpaceClaim 2020 R2 software and finite element analysis. RESULTS. Maximum stress was found in the group function occlusion. The maximum stress increased with an increase in the angle of occlusal force. CONCLUSION. The canine guidance occlusion with monolithic zirconia crown materials is promising for implant-supported prostheses in the canine and premolar areas.

Correlation between microhardness and wear resistance of dental alloys against monolithic zirconia

  • Cha, Min-Sang;Lee, Sang-Woon;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.127-135
    • /
    • 2021
  • Purpose. The aim of this study is to compare the hardness according to the conditions of metal alloys. Moreover, the correlation between the cast crown hardness before and after wear testing and the degree of wear for each dental alloy was assessed. Materials and Methods. Cast crowns of three metal alloys (Co-Cr, gold, and Ni-Cr alloys) opposing smooth-surface monolithic zirconia were used. The Vickers microhardness of the ingot (which did not undergo wear testing) and the cast crown before and after wear testing were measured for each alloy. Two-way ANOVA and Scheffé tests were used to compare the measured hardness values. Moreover, the Pearson correlation coefficient was used to evaluate the relationship between the surface hardness and the wear of the cast crown (α=.05). Results. There was no significant difference in the hardness before and after wear testing for the gold alloy (P>.05); however, the hardness of the worn surface of the cast crown increased compared to that of the cast crown before the wear tests of Ni-Cr and Co-Cr alloys (P<.05). Furthermore, there was no correlation between the wear and hardness of the cast crown before and after wear testing for all three metal alloys (P>.05). Conclusion. There was a significant difference in hardness between dental alloys under the same conditions. No correlation existed between the surface hardness of the cast crown before and after wear testing and the wear of the cast crown.

The research about the physical properties and flexural strength changed by Low Temperature Degradation of TZP monolithic all-ceramic crown block to make bio-prosthetic dentistry (치과용 생체보철물 제작을 위한 TZP 단일구조 전부도재관 블럭의 물성과 저온열화 후 굴곡강도에 관한 연구)

  • Lee, Jong-Hwa;Park, Chun-Man;Song, Jae-Sang;Lim, Si-Duk;Kim, Jae-Do;Kim, Byung-Sik;Hwang, In-Whan;Lee, Sung-Kuk
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.83-93
    • /
    • 2012
  • Purpose: The objective of this study is to find out physical properties and the flexural strength changed by the low temperature degradation of the block which is needed to make bio-prosthetic dentistry which is better than feldspar affiliated ceramic made by building up ceramic powder and also to apply this to the clinical use of zirconia monolithic all-ceramic crown. Methods: Flexural strength of each sample was evaluated before and after the Low Temperature Degradation, and physical properties of the Tetra Zirconia Block containing 3mol % was evaluated as well. The average and standard deviation of each experimental group were came out of the evaluation. Statistical package for social science 18.0 was used for statistics. Results: The average density of the monolithic all-ceramic crown was $6.0280{\pm}0.0147g/cm$, the relative density was 99.01 %. When the sample was sintered at $1480^{\circ}C$ the diameter of average particle was $396.62{\pm}33.71nm$. All the samples had no monolithic peak after XRD evaluation but only had tetragonal peak. There were statistically significant differences in the result of flexural strength of the samples evaluated after and before the low temperature degradation, the flexural strength before the low temperature degradation was $1747.40{\ss}{\acute{A}}$, at the temperature of $130^{\circ}C$ the flexural strength after the low temperature degradation was 1063.99MPa (p<0.001). There was statistically significant difference in the result of strength of 1020.07MPa after the low temperature degradation at the temperature of $200^{\circ}C$ (p<0.001). Conclusion: The block which was made for this evaluation possesses such an excellent strength among dental restorative materials that it is thought to have no problems to use for tetragonal zirconia polycrystal.

Effect of additional firing process after sintering of monolithic zirconia crown on marginal and internal fitness (단일구조 지르코니아 크라운의 소결 후 추가 소성 과정이 변연 및 내면 적합도에 미치는 영향)

  • Shin, Mi-Sun;Lee, Hyeonjong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.321-327
    • /
    • 2019
  • Purpose: To evaluate an effect of additional firing process after sintering of monolithic zirconia crown on marginal and internal fit through three-dimensional analysis. Materials and methods: Ten monolithic zirconia crowns were fabricated using titanium abutment model. Monolithic zirconia crowns were designed, milled, and sintered as a control group, and additional firing with coloring was performed as a test group. Three dimensional analysis were performed by using triple-scan protocol, and cross-section analysis on mesio-distal and disto-lingual section was evaluated to measure marginal and internal fitness. Then, three-dimensional surface difference on between two groups was evaluated (${\alpha}=.05$). Results: There was statistically significant difference between the control group ($32.0{\pm}24.3{\mu}m$) and the test group ($17.0{\pm}10.8{\mu}m$) in the mesial axial wall (P < .02) and the control group ($60.2{\pm}24.3{\mu}m$) and the test group ($71.8{\pm}21.5{\mu}m$) in the distal axial wall (P < .01). There was no statistically significant difference at the remaining point. Conclusion: There was no statistical significance on the deviation of inner surface of crown according to firing number, and the results of both group were considered clinically acceptable.

Achieving Esthetics in Anterior Region using Monolithic Zirconia Restoration (Monolithic Zirconia Crown을 이용한 심미적 접근)

  • Kim, Chonghwa
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.4-14
    • /
    • 2016
  • Although CAD/CAM technology has been used in dentistry for more than decades, the present CAD/CAM dentistry is still quite inefficient or unesthetic. Zirconia restoration has faced with two contradictory words, 'Efficiency' and 'Esthetics'. One can consider monolithic zirconia restoration to be efficient with CAD/CAM. The monolithic zirconia restoration, however, is rarely esthetic due to the current limitations with zirconia. On the contrary, porcelain build-up is almost indispensible in fabricating esthetic restoration, especially in anterior region. In this article, the current status of monolithic zirconia restoration and clinical cases will be presented.

Superimposition: a simple method to minimize occlusal adjustment of monolithic restoration (디지털 장비의 중첩기능을 이용하여 단일체 수복물의 교합조정을 최소화한 증례)

  • Choi, Changhun;Kim, Sunjai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.253-258
    • /
    • 2016
  • The development of translucent zirconia enabled clinicians to choose a monolithic zirconia crown as one treatment modality in the posterior dentition. Careful occlusal adjustments are recommended for monolithic zirconia crowns because grinding zirconia inevitably causes phase transformation, which may deteriorate mechanical properties. intraoral scanners enable the clinician to scan and superimpose a complete tooth structure before preparation onto the prepared abutment. This technique helps to reproduce the original tooth form and occlusion of the patient. In this case report, prostheses were fabricated for patients with cracked or fractured tooth by applying intraoral scanner, Computer aided design-computer aided manufacturing (CAD-CAM) and monolithic zirconia crown to reproduce the occlusion of original tooth and to minimize occlusal adjustment. The clinical results were satisfactory in both esthetic and functional aspects.