• 제목/요약/키워드: Monolithic analysis

검색결과 193건 처리시간 0.021초

$80Al_2O_3-20Al$ 복합재료의 내열충격성: 실험과 유한요소 해석 (Thermal Shock Resistance of $80Al_2O_3-20Al$ Composites: Experiments and Finite Element Analysis)

  • 김일수;신병철
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.201-204
    • /
    • 2000
  • Thermal shock resistance of 80Al2O3-20Al composite and monolithic alumina ceramics was compared. Fracture strength was measured by using a 4-pont bending test after quenching. Thermal stresses of the ceramics and ceramic-metal composites were calculated using a finite element analysis. The bending strength of the Al2O3 ceramics decreased catastropically after quenching from 20$0^{\circ}C$ to $0^{\circ}C$. The bending strength of the composite also decreased after quenching from 200~2$25^{\circ}C$, but the strength reduction was much smaller than for Al2O3. The maximum thermal stress occured in the monolithic alumina ceramics when exposed to a temperature difference of 20$0^{\circ}C$ was 0.758 GPa. The same amount of stress occured in the Al2O3-Al composite when the temperature difference of 205$^{\circ}C$ used.

  • PDF

계면 포획 전하를 고려한 3차원 인버터의 특성 분석 (Characteristic Analysis of Monolithic 3D Inverter Considering Interface Charge)

  • 안태준;최범호;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.514-516
    • /
    • 2018
  • 이 논문은 모놀리식 3차원 공정 시 열에 의해 생성될 수 있는 계면 포획 전하가 3차원 인버터의 특성에 미치는 영향에 대하여 TCAD 시뮬레이션을 통해 확인하였다. 계면 포획 전하는 문턱 전압 및 ILD 두께에 따른 문턱 전압의 변화량에도 영향을 주었고 3차원 인버터의 입출력 특성에도 영향을 주는 것을 확인하였다.

  • PDF

Influence of preparation design on fracture resistance of different monolithic zirconia crowns: A comparative study

  • Findakly, Meelad Basil;Jasim, Haider Hasan
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권6호
    • /
    • pp.324-330
    • /
    • 2019
  • PURPOSE. The aim of the study was to evaluate and compare the fracture resistance and modes of fracture of monolithic zirconia crowns with two preparation designs. MATERIALS AND METHODS. Forty human maxillary first premolar teeth were extracted for orthodontic purposes and divided into two main groups (n=20): Group A: monolithic traditional zirconia; Group B: monolithic translucent zirconia. The groups were further subdivided into two subgroups (n=10): (A1, B1) shoulder margin design; (A2, B2) feather-edge margin design. Teeth were prepared with either a 1 mm shoulder margin design or a feather-edge margin design. The prepared teeth were scanned using a digital intraoral scanner. The crowns were cemented using self-adhesive resin cement. All cemented teeth were stored in water for 7 days and thermocycling was done before testing. All samples were subjected to compressive axial loading until fracture. The fractographic analysis was done to assess the modes of fracture of the tested samples. RESULTS. The highest mean values of fracture resistance were recorded in kilo-newton and were in the order of subgroup A1 (2.903); subgroup A2 (2.3); subgroup B1 (1.854) and subgroup B2 (1.523). One-way ANOVA showed a statistically significant difference among the 4 subgroups. Concerning modes of fracture, the majority of samples in subgroups A1 and B1 were fracture of restoration and/or tooth, while in subgroups A2 and B2, the majority of samples fractured through the central fossa. CONCLUSION. Even though all the tested crowns fractured at a higher level than the maximum occlusal forces, the shoulder margin design was better than the feather-edge margin design and the monolithic traditional zirconia was better than the monolithic translucent zirconia in terms of fracture strength.

Shear bond strength of indirect composite material to monolithic zirconia

  • Sari, Fatih;Secilmis, Asli;Simsek, Irfan;Ozsevik, Semih
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권4호
    • /
    • pp.267-274
    • /
    • 2016
  • PURPOSE. This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS. Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (${\alpha}$=.05). RESULTS. Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION. Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.

The effect of various polishing systems on surface roughness and phase transformation of monolithic zirconia

  • Caglar, Ipek;Ates, Sabit Melih;Duymus, Zeynep Yesil
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권2호
    • /
    • pp.132-137
    • /
    • 2018
  • PURPOSE. The purpose of this study was to evaluate and compare three polishing systems on the surface roughness and phase transformation of monolithic zirconia. MATERIALS AND METHODS. 100 disk shaped specimens (10 mm diameter, 3 mm thickness) were fabricated from monolithic zirconia blocks. 20 specimens were left as a control group and remaining specimens were grinded by diamond bur to simulate the occlusal adjustments. Grinded specimens were randomly divided into 4 groups: group G (no polishing), group M (Meisinger, zirconia polishing kit), group E (EVE Diacera, zirconia polishing kit), and group P (EVE Diapol, porcelain polishing kit). Surface roughness was measured with profilometer and surface topography was observed with SEM. XRD analysis was performed to investigate the phase transformation. Statistical analysis was performed with one-way ANOVA and Tukey's post hoc tests at a significance level of P=.05. RESULTS. All polishing groups showed a smoother surface than group G. Among 3 polishing systems, group M and group E exhibited a smoother surface than the group P. However, no significant differences were observed between group M and group E (P>.05). Grinding and polishing did not cause phase transformations in zirconia specimens. CONCLUSION. Zirconia polishing systems created a smoother surface on zirconia than the porcelain polishing system. Phase transformation did not occur during the polishing procedure.

Evaluation of reliability of zirconia materials to be used in implant-retained restoration on the atrophic bone of the posterior maxilla: A finite element study

  • Degirmenci, Kubra;Kocak-Buyukdere, Ayse;Ekici, Bulent
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권2호
    • /
    • pp.112-119
    • /
    • 2019
  • PURPOSE. Zirconia materials have been used for implant-retained restorations, but the stress distribution of zirconia is not entirely clear. The aim of this study is to evaluate the stress distribution and risky areas caused by the different design of zirconia restorations on the atrophic bone of the posterior maxilla. MATERIALS AND METHODS. An edentulous D4-type bone model was prepared from radiography of an atrophic posterior maxilla. Monolithic zirconia and zirconia-fused porcelain implant-retained restorations were designed as splinted or non-splinted. 300-N occlusal forces were applied obliquely. Stress analyses were performed using a 3D FEA program. RESULTS. According to stress analysis, the bone between the 1) molar implant and the 2) premolar in the non-splinted monolithic zirconia restoration model was stated as the riskiest area. Similarly, the maximum von Mises stress value was detected on the bone of the non-splinted monolithic zirconia models. CONCLUSION. Splinting of implant-retained restorations can be more critical for monolithic zirconia than zirconia fused to porcelain for the longevity of the bone.

BPM에 의한 Monolithic Laser-Waveguide Coupler의 특성 연구 (A Study on the Characteristics of Monolithic Laser-Waveguide Coupler by BPM)

  • 장지호;최태일;최병하
    • 한국통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.100-110
    • /
    • 1994
  • 본 연구에서는 효율적인 광원과 광도파로간의 결합방법으로서 많은 연구가 진행중인 monolithic laser-waveguide coupler 특성해석에 beam propagation method를 도입하여 기존의 방법과 비교검토 한 결과 타당성을 입증할 수 있었으며, 또한 결합효율을 향상시키기 위하여 taper 구조를 가진 monlithic laser-waveguide coupler를 제시하였다. monolithic laser-waveguide coupler는 능동소자인 laser의 특성과 수동소자인 waveguide의 특성을 동시에 가지고 있으므로 고려하여야할 요소가 매우 많고, 또 각 요소들의 변화에 따라 결합기의 성능이 크게 좌우되므로 그 특성 연구가 많은 어려움이 있었다. 때문에 본 연구에서는 방향성 결합기를 사용한 모델을 해석하는 방법으로 기존의 coupled mode 이론을 사용할 수도 있겠으나, 본 연구에서와 같이 많은 변수를 가지는 경우의 해석에는 적용하기 어렵다는 단점 때문에 beam propagation method를 사용한 해석을 시도하였다. 또한 해석에 있어서 가장 기본이 되는 초기전개의 계산에서도 종래의 연구에서와 달리 근사식을 이용해 전계를 계산하지 않고, 주어진 구조에 대하여 직접 finite difference method를 적용하여 초기전계를 구하였다. 이러한 새로운 시도들이 가지는 잇점을 방법과 비교하여 알아 보았으며, 새로운 방법의 적용을 통하여 보다 많은 변수를 고려하여 monolithic laser-waveguide coupler의 특성을 연구할 수 있었다. 이러한 과정을 통하여 결합기의 특성을 파악하고 그 결과로 monolothic laser-waveguide coupler의 특성중 가장 중요한 결합특성을 향상 시키기 위해서 taper영역을 가지는 monolothic laser-waveguide coupler를 제안하였다. 본 연구에서 제안한 구조에 대하여 특성을 조사해본 결과 79%정도의 좋은 결합효율을 얻을 수 있었다.

  • PDF

Effect of sintering programs and surface treatments on monolithic zirconia

  • Seren Nur Dokuzlu ;Meryem Gulce Subasi
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권1호
    • /
    • pp.25-37
    • /
    • 2024
  • PURPOSE. To investigate the effect of sintering programs and surface treatments on surface properties, phase transformation and flexural strength of monolithic zirconia. MATERIALS AND METHODS. Zirconia specimens were sintered using three distinct sintering programs [classic (C), speed (S), and superspeed (SS)] (n = 56, each). One sample from each group underwent scanning electron microscopy (SEM) and grain size analysis following sintering. Remaining samples were divided into five subgroups (n = 11) based on the surface treatments: control (CL), polish (P), glaze (G), grind + polish (GP), and grind + glaze (GG). One sample from each subgroup underwent SEM analysis. Remaining samples were thermally aged. Monoclinic phase volume, surface roughness, and three-point flexural strength were measured. Monoclinic phase volume and surface roughness were analyzed by Kruskal-Wallis and Dunn tests. Flexural strength was analyzed by two-way ANOVA and Weibull analysis. The relationships among the groups were analyzed using Spearman's correlation analysis. RESULTS. Sintering program, surface treatment, and sintering × surface treatment (P ≤ .010) affected the monoclinic phase volume, whereas the type of surface treatment and sintering × surface treatment affected the surface roughness (P < .001). Type of sintering program or surface treatment did not affect the flexural strength. Weibull analysis revealed no significant differences between the m and σo values. Monoclinic phase volume was positively correlated with surface roughness in the SGG and SSP groups. CONCLUSION. After sintering monolithic zirconia in each of the three sintering programs, each of the surface treatments can be used. However, for surface quality and aging resistance, G or GG can be recommended as a surface finishing method.

Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

  • Mitov, Gergo;Anastassova-Yoshida, Yana;Nothdurft, Frank Phillip;See, Constantin von;Pospiech, Peter
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권1호
    • /
    • pp.30-36
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling $5^{\circ}C-55^{\circ}C$ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at $137^{\circ}C$, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

지르코니아 단일구조 전부도재관의 지대치 형태에 따른 파절 강도 (Fracture Strength Analysis of Monolithic Zirconia Ceramic by Abutment Shape)

  • 김원영;홍민호
    • 대한치과기공학회지
    • /
    • 제36권4호
    • /
    • pp.231-237
    • /
    • 2014
  • Purpose: This study was performed fracture strength test by conducted change of abutment and coping shape for suggesting monolithic all ceramic crown which has thin thickness and superior strength of the occlusal surface. Methods: The specimens on the four kinds abutment was made according to thickness of occlusal surface and angle of axis surface. And All ceramic coping specimens of 6 different kinds was made by the CAD/CAM Method. Compression strength test using the UTM and the verification of compression-stress situation using the 3D finite element method were conducted under optimum conditions. Results: 516C specimen was showed the strongest compression-fracture strength, followed by 516FR, 516F45, specimens. Did not show significant differences between 516FR and 516F45. 516C of the universal testing machine the specimen's surface that are within the vertical load is small, finite element method of a uniformly distributed load, so the value received suggests otherwise. Conclusion: In conclusion, abutments of monolithic ziconia ceramic when having a same thickness of the occlusal, as the angle of occlusal edge is small, the stress is well dispersed and it can endure well in the fracture.