• 제목/요약/키워드: Moment-Rotation-curves

검색결과 42건 처리시간 0.029초

For the Association between 3D VAR Model and 2D Features

  • Kiuchi, Yasuhiko;Tanaka, Masaru;Fujiki, Jun;Mishima, Taketoshi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1404-1407
    • /
    • 2002
  • Although we look at objects as 2D images through our eyes, we can reconstruct the shape and/or depth of objects. In order to realize this ability using computers, it is required that the method which can estimate the 3D features of object from 2D images. As feature which represents 3D shapes effectively, three dimensional vector autoregressive model is pro- posed. If this feature is associated other feature of 2D shape, then above aim might be achieved. On the other hand, as feature which represents 2D shapes, quasi moment features is proposed. As the first step of association of these features, we constructed real time simulator that computes both of two features concurrently from object data (3D curves) . This simulator can also rotate object and estimate the rotation The method using 3D VAR model estimates the rotation correctly, but the estimation by quasi moment features includes much errors. This reason would be that projected images are constructed by the points only, and doesn't have enough sizes to estimate the correct 3D rotation parameters.

  • PDF

Flare and Starspot-induced Variabilities of Red Dwarf Stars in the Open Cluster M37: Photometric Study on Magnetic Activity

  • Chang, Seo-Won
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.83.2-83.2
    • /
    • 2014
  • Flare and rotational variabilities induced by stellar activity are important for studying the effect of magnetic fields on the evolution of red dwarf stars. The level and frequency of magnetic activity in these stars have a different aspect at every moment of the observations due to the effect of age-rotation relation. The use of both tracers is thus essential to have a relatively homogeneous set of stellar activity data for statistical studies. The archival light curves and imaging data of the open cluster M37 taken by MMT 6.5m telescope were used for this work. In order to achieve much more accurate photometric precisions and also to make the most efficient use of the data, the entire imaging database were re-analyzed with our new time-series photometry technique and carefully calibration procedures. Based on the new light curves, we study, for the first time, a variety of aspects of those two variabilities in red dwarfs and their relation to magnetic activity. In this talk, we present all observational evidences that support the idea that the strength of magnetic activity is closely connected with the rotation rate of a star and its evolutionary status (age-activity-rotation paradigm). In conclusion, we suggest future directions to improve our understanding of stellar activity in cool stars with photometric time-series data.

  • PDF

Experimental investigation of force-distribution in high-strength bolts in extended end-plate connections

  • Abdalla, K.M.;Abu-Farsakh, G.A.R.;Barakat, S.A.
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.87-103
    • /
    • 2007
  • This paper presents some of the results from an experimental research project on the behavior of extended end-plate connections subjected to moment conducted at the Structural Laboratory of Jordan University of Science and Technology. Since the connection behavior affects the structural frame response, it must be included in the global analysis and design. In this study, the behavior of six full-scale stiffened and unstiffened cantilever connections of HEA- and IPE-sections has been investigated. Eight high strength bolts were used to connect the extended end-plate to the column flange in each case. Strain gauges were installed inside each of the top six bolts in order to obtain experimentally the actual tension force induced within each bolt. Then the connection behavior is characterized by the tension force in the bolt, extended end-plate behavior, moment-rotation relation, and beam and column strains. Some or all of these characteristics are used by many Standards; therefore, it is essential to predict the global behavior of column-beam connections by their geometrical and mechanical properties. The experimental test results are compared with two theoretical (equal distribution and linear distribution) approaches in order to assess the capabilities and accuracy of the theoretical models. A simple model of the joint is established and the essential parameters to predict its strength and deformational behavior are determined. The equal distribution method reasonably determined the tension forces in the upper two bolts while the linear distribution method underestimated them. The deformation behavior of the tested connections was characterized by separation of the column-flange from the extended end-plate almost down to the level of the upper two bolts of the lower group and below this level the two parts remained in full contact. The neutral axis of the deformed joint is reasonably assumed to pass very close to the line joining the upper two bolts of the lower group. Smooth monotonic moment-rotation relations for the all tested frames were observed.

Experimental study of a modeled building frame supported by pile groups embedded in cohesionless soil

  • Ravi Kumar Reddy, C.;Gunneswara Rao, T.D.
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.321-336
    • /
    • 2011
  • This paper presents the results of static vertical load tests carried out on a model building frame supported by pile groups embedded in cohesionless soil (sand). The effect of soil interaction on displacements and rotation at the column base and also the shears and bending moments in the columns of the building frame were investigated. The experimental results have been compared with those obtained from the finite element analysis and conventional method of analysis. Soil nonlinearity in the lateral direction is characterized by the p-y curves and in the axial direction by nonlinear vertical springs along the length of the piles (${\tau}-z$ curves) at their tips (Q-z curves). The results reveal that the conventional method gives the shear force in the column by about 40-60%, the bending moment at the column top about 20-30% and at the column base about 75-100% more than those from the experimental results. The response of the frame from the experimental results is in good agreement with that obtained by the nonlinear finite element analysis.

Assessment of nonlinear static and incremental dynamic analyses for RC structures

  • Oncu, Mehmet Emin;Yon, Merve Sahin
    • Computers and Concrete
    • /
    • 제18권6호
    • /
    • pp.1195-1211
    • /
    • 2016
  • In this study, seismic behaviour of reinforced concrete buildings using the pushover and incremental dynamic analysis method was investigated. A numerical study was performed for a reinforced concrete frame building. Pushover analysis according to uniform and triangular load shapes and incremental dynamic analyses were performed for selected building. For the nonlinear analysis, three ground motion records were selected to ensure compatibility with the design spectrum defined in the Turkish Seismic Code. The maximum response, dynamic pushover curve, capacity curves, interstorey drifts and moment rotation curves for various element ends of the selected building were obtained. Results were compared each other and good correlation was obtained between the dynamic analyses envelope with static pushover curves for the building.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

이미지 신호를 이용한 원자력발전소 강재배관 Tee의 저주기 피로 거동 (Low-cycle Fatigue Behaviors of the Steel Pipe Tee of a Nuclear Power Plant Using Image Signals)

  • 김성완;전법규;정진환;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권6호
    • /
    • pp.77-83
    • /
    • 2019
  • 원자력발전소에 지진격리장치를 설치하면 지진에 의한 하중을 지진격리장치가 담당하면서 설치 전보다 큰 변위가 발생하게 될 것으로 예상되며, 변위증가에 따라 일부 설비의 지진리스크가 증가될 가능성이 있다. 특히 지진격리된 구조물과 일반 구조물을 연결하는 설비인 배관 시스템의 경우 지진리스크가 크게 증가될 것으로 예상된다. 본 연구에서는 원자력발전소 배관 시스템의 취약부위인 강재 배관 Tee의 한계상태를 누수로 정의하고 면내반복가력시험을 수행하였다. 강재 배관 Tee의 모멘트와 변형각은 기존의 센서를 이용한 계측이 어려우므로 이미지 신호를 이용하여 측정하였다. 본 연구에서는 3인치 강재 배관 Tee의 모멘트와 변형각의 관계를 이용한 누수 선도 및 저주기 피로 곡선들을 제시하였다.

Analysis on mechanical behavior of dovetail mortise-tenon joints with looseness in traditional timber buildings

  • Li, Yizhu;Cao, Shuangyin;Xue, Jianyang
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.903-921
    • /
    • 2016
  • To study the effect of looseness on mechanical behavior of dovetail mortise-tenon joints, five dovetail mortise-tenon joints, including one intact joint and four loose joints, were fabricated and tested under cycle lateral loadings, and non-linear finite element models using the software ABAQUS were also developed. The effects of looseness on stress distribution, rotational stiffness and bearing capacity of joints were studied based on the analysis of test and simulation results. The results indicate that the hysteretic loops are anti-Z-shaped and present typical characteristics of pinching and slippage, the envelop curves of joints are classified as following two stages: elastic and strengthening stage. The peak stress, rotational stiffness and bearing capacity of joints were reduced due to looseness. The moment-rotation theoretical model of intact joint was simplified in terms of the relation of construction dimensions for buildings, and the moment-rotation theoretical model considering the effect of looseness was proposed and validated.

Behaviour of welded beam-to-column joints subjected to the static load

  • Skejic, Davor;Dujmovic, Darko;Androic, Boris
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.17-35
    • /
    • 2008
  • Neglecting the real joint behaviour in frame analysis may result in unrealistic predictions of the response and reliability of steel frames. The reliability of the prediction of main joint properties according to the component method (Eurocode 3-Part 1.8) still remains open to further investigation. The first step toward the solution is to compare the theoretical expressions given in EN 1993-1-8 and the experimental results. With that goal in mind six nominally the same, but really different specimens of welded beam-to-column joints subjected to static load were tested. The specimens present a combination of nominally identical structural elements produced in different European mills. This paper provides these tests, as well as their detailed evaulation and interpretation. All three joint structural properties (rotational stiffness, moment resistance and rotation capacity) have been considered. Four models for determining the plastic resistance out of experimental Mj-${\phi}$ curves have been applied. The results that have been discussed in detail, point to the fact that EN 1993-1-8 underestimates the real structural properties of the tested type of joint, as well as to the conclusion that detailed research of this problem needs to be conducted using the probabilistic reliability methods.

Experimental and analytical behavior of stiffened angle joints

  • Wang, Peng;Pan, Jianrong;Wang, Zhan;Chen, Shizhe
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.67-78
    • /
    • 2018
  • The application of rib stiffeners is common on steel connections, with regard to the stiffened angle connection, experimental results about the influence of stiffeners under monotonic and cyclic loading are very limited. Consequently, this paper presents the experimental investigation on four types angle connections with or without stiffener under static loading and another four type stiffened angle connections subjected to cyclic loading. The static experimental result showed that the rib stiffener weld in tension zone of the connection greatly enhanced its initial rotational stiffness and flexural strength. While a stiffener was applied to the compression zone of the connection, it had not obvious influences on the initial rotational stiffness, but increased its flexural strength. The moment-rotation curves, skeleton curves, ductility, energy dissipation and rigidity were evaluated under cyclic loading. Stiffened top-and-seat angle connections behaved as semi-rigid and partial strength, and rotation of all stiffened angle connections exceeded 0.04rad. The failure modes between monotonic and cyclic loading test were completely different and indicated certain robustness.