• Title/Summary/Keyword: Moment Based Model

Search Result 766, Processing Time 0.021 seconds

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.

Comparison of Energy Demand in Multi-Story Buckling Restrained Braced Frame and Equivalent SDOF System (다층 비좌굴 가새골조와 등가 단자유도계의 에너지 요구량의 비교)

  • 김진구;원영섭
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.173-182
    • /
    • 2003
  • In equivalent static nonlinear analysis and in energy-based design, the structures are generally transformed into an equivalent SDOF system. In this study the seismic energy demands in multi story structures, such as three-, eight-, and twenty-story steel moment-resisting frames(MRF), buckling restrained braced frames(BRBF) and a damage tolerant braced frame(DTBF), are compared with those of equivalent single degree of freedom(ESDOF) systems. Sixty earthquake ground motions recorded In different soil conditions, which are soft rock, soft soil, and neat fault, were used to compute the input and hysteretic energy demands in model structures. In case the modal mass coefficient is less than 0.8, the effects of higher modes are considered in the process of converting into ESDOF According to the analysis results, the hysteretic and input energies obtained from 3 story and 8 story MRF and DTBF agreed well with the results from analysis of equivalent SDOF systems. However in the 20 story BRBF the results from ESDOF underestimated those obtained from the original structures.

A Protection Capacity Evaluation of Vessel Protective Structures by Quasi-Static Collision Analysis (준정적 충돌해석을 통한 선박충돌방공호의 방호능력평가)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, the vessel collision protective structure and the vessel were modeled numerically and the quasi-static collision analysis was performed to evaluate the maximum protection capacity. In the modeling process of protective structure, the nonlinear behaviors of structure and the supporting conditions of ground including pull-out action were considered. In that of collision vessel, the bow of vessel was modeled precisely, because of the nonlinear behaviors were concentrated on it. For the efficient analysis, the mass scaling scheme was applied, also. To evaluate the differences and efficiency, the dynamic analyses were performed for the same model, additionally. Based on the obtained energy dissipation curves of the structure and the vessel, the moment that the collision force affected to the bridge substructures was determined and the maximum allowable collision velocity was evaluated. Because of the energy dissipation bound can be recognized clearly, this scheme can be used efficient in engineering work.

Design and Walking of Child-typed Humanoid Robot (아동형 휴머노이드 로봇의 설계 및 보행)

  • Lee, Ki-Nam;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.248-253
    • /
    • 2015
  • In order to adapt to human's life and perform missions, a humanoid robot needs a height at least similar with children's. In this paper, we proposed a humanoid robot which is like a child who is taller than 1m. We presented showing the humanoid robot's kinematics, designing of a three-dimensional model, developing mechanisms, and the hardware structures using servo motors and compact size PC. Through this process, we designed and manufactured child humanoid robot 'CHARLES(Cognitive Humanoid Autonomous Robot with Learning and Evolutionary Systems)' that is robot is 1m 10cm tall and 8.16kg in weight. For robot's walking, we applied to ZMP-based walking technique and the creation algorithm is applied for walking patterns. Through experiments, we analyzed walking patterns according to the creation and changing parameter values.

Design of an integrated Chassis Controller for the Improvement of Vehicle Dynamic Characteristics (차량의 동특성 향상을 위한 통합 샤시 제어기의 설계)

  • Lee, Sin-Won;An, Tae-Hwan;An, Hyeon-Sik;Lee, Un-Seong;Kim, Do-Hyeon;Kim, Sang-Seop
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.43-52
    • /
    • 1998
  • In this paper, a novel type of an integrated controller is designed for vehicles equipped with active classis systems to improve vehicle stability, handling, and ride comfort. The hybrid fuzzy logic controller consists of a fuzzy logic controller, a skyhook controller, an attitude controller, and a roll moment distribution controller, and these controllers are used with a proper combination which is determined by the integrated control logic based on driving conditions of a vehicle. It is shown by simulations using MATRIXx/SYSTEMBBUILD software that ride comfort, handling, and active safety are improved for a 16 degree-of-freedom vehicle dynamic model.

  • PDF

Evaluation of Plastic Rotational Capacity Based on Material Characteristics in Reinforced Concrete Flexural Members (재료 특성에 기반한 철근콘크리트 휨부재의 소성회전능력 산정)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • Although a critical section reaches its flexural strength in reinforced concrete structures, the structure does not always fail because moment redistribution occurs during the formation of plastic hinges. Inelastic deformation in a plastic hinge region results in plastic rotation. A plastic hinge mainly depends on material characteristics. In this study, a plastic hinge length and plastic rotation are evaluated using the flexural curvature distribution which is derived from the material models given in Eurocode 2. The influence on plastic capacity the limit values of the material model used, that is, ultimate strain of concrete and steel and hardening ratio of steel(k), are investigated. As results, it is appeared that a large ultimate strain of concrete and steel is resulting in large plastic capactiy and also as a hardening ratio of steel increases, the plastic rotation increases significantly. Therefore, a careful attention would be paid to determine the limit values of material characteristics in the RC structures.

A Study of Hydrodynamic Forces Acting on a Ship Hull Under Lateral Low Speed Motion (저속 횡 이동하는 선박의 선체에 작용하는 유체력에 관한 연구)

  • 이윤석;김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • An accurate method of estimating ship maneuverability needs to be developed to evaluate precisely and improve the maneuverability of ships according to the water depth. In order to estimate maneuverability by a mathematical model. The hydrodynamic forces acting on a ship hull and the flow field around the ship in maneuvering motion need to be estimated. The ship speed new the berth is very low and the fluid flow around a ship hull is unsteady. So, the transient fluid motion should be considered to estimate the drag force acting on the ship hull. In the low speed and short time lateral motion, the vorticity is created by the body and grow up in the acceleration stage and the velocity induced by the vorticity affect to the body in deceleration stage. For this kind of problem, CFD is considered as a goof tool to understand the phenomena. In this paper, the 2D CFD code is used for basic consideration of the phenomena to solve the flow in the cross section of the ship considering the ship is slender and the water depth is large enough. The flow fields Added and hydrodynamic forces for the some prescribed motions are computed and compared with the preliminary experiment results. The comparison of the force with measurement is shown a fairly good agreement in tendency. The 3D Potential Calculation based on the Hess & Smith Theory is employed to predict the surge, sway added mass and yaw added moment of inertia of hydrodynamic coefficients for M/V ESSO OSAKA according to the water depth. The results are also compared with experimental data. Finally, the sway added mass of hydrodynamic coefficients for T/S HANNARA is suggested in each water depth.

  • PDF

Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings

  • Velazquez-Santilla, Francisco;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.49-69
    • /
    • 2018
  • This paper shows an optimal design for reinforced concrete rectangular combined footings based on a criterion of minimum cost. The classical design method for reinforced concrete rectangular combined footings is: First, a dimension is proposed that should comply with the allowable stresses (Minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity withstand by the soil); subsequently, the effective depth is obtained due to the maximum moment and this effective depth is checked against the bending shear and the punching shear until, it complies with these conditions, and then the steel reinforcement is obtained, but this is not guaranteed that obtained cost is a minimum cost. A numerical experimentation shows the model capability to estimate the minimum cost design of the materials used for a rectangular combined footing that supports two columns under an axial load and moments in two directions at each column in accordance to the building code requirements for structural concrete and commentary (ACI 318S-14). Numerical experimentation is developed by modifying the values of the rectangular combined footing to from "d" (Effective depth), "b" (Short dimension), "a" (Greater dimension), "${\rho}_{P1}$" (Ratio of reinforcement steel under column 1), "${\rho}_{P2}$" (Ratio of reinforcement steel under column 2), "${\rho}_{yLB}$" (Ratio of longitudinal reinforcement steel in the bottom), "${\rho}_{yLT}$" (Ratio of longitudinal reinforcement steel at the top). Results show that the optimal design is more economical and more precise with respect to the classical design. Therefore, the optimal design presented in this paper should be used to obtain the minimum cost design for reinforced concrete rectangular combined footings.

Seismic Response of a High-Rise RC Bearing-Wall Structure with Irregularities of Weak Story and Torsion at Bottom Stories (저층부에 약층과 비틀림 비정형성을 가진 고층 비정형 RC벽식 구조물의 지진응답)

  • 이한선;고동우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.81-91
    • /
    • 2003
  • Recently, many high-rise reinforced concrete(RC) bearing-wall structures of multiple uses have been constructed, which have the irregularities of weak(or soft) story and torsion at the lower stories simultaneously. The study stated herein was performed to investigate seismic performance of such a high-rise RC structure through a series of shaking table tests of a 1: 12 model. Based on the observations of the test results, the conclusions are drawn as follows: 1) Accidental torsion due to the uncertainty on the properties of structure can be reasonably predicted by using the dynamic analysis than by using lateral force procedure. 2) The mode coupled by translation and torsion induced the overturning moments not only in the direction of excitations but also in the perpendicular direction: The axial forces in columns due to this transverse overturning moment cannot be adequately predicted using the existing mode analysis technique, and 3) the hysteretic curve and the strength diagram between base shear and torque(BST) clearly reveal the predominant mode of vibrations and the failure mode.

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.