DOI QR코드

DOI QR Code

Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings

  • Received : 2017.12.18
  • Accepted : 2018.01.17
  • Published : 2018.01.25

Abstract

This paper shows an optimal design for reinforced concrete rectangular combined footings based on a criterion of minimum cost. The classical design method for reinforced concrete rectangular combined footings is: First, a dimension is proposed that should comply with the allowable stresses (Minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity withstand by the soil); subsequently, the effective depth is obtained due to the maximum moment and this effective depth is checked against the bending shear and the punching shear until, it complies with these conditions, and then the steel reinforcement is obtained, but this is not guaranteed that obtained cost is a minimum cost. A numerical experimentation shows the model capability to estimate the minimum cost design of the materials used for a rectangular combined footing that supports two columns under an axial load and moments in two directions at each column in accordance to the building code requirements for structural concrete and commentary (ACI 318S-14). Numerical experimentation is developed by modifying the values of the rectangular combined footing to from "d" (Effective depth), "b" (Short dimension), "a" (Greater dimension), "${\rho}_{P1}$" (Ratio of reinforcement steel under column 1), "${\rho}_{P2}$" (Ratio of reinforcement steel under column 2), "${\rho}_{yLB}$" (Ratio of longitudinal reinforcement steel in the bottom), "${\rho}_{yLT}$" (Ratio of longitudinal reinforcement steel at the top). Results show that the optimal design is more economical and more precise with respect to the classical design. Therefore, the optimal design presented in this paper should be used to obtain the minimum cost design for reinforced concrete rectangular combined footings.

Keywords

References

  1. Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliability-based design optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., 52(6), 1099-1120.
  2. ACI 318S-14 (American Concrete Institute) (2014), Building Code Requirements for Structural Concrete and Commentary, Committee 318.
  3. Al-Ansari, M.S. (2013), "Structural cost of optimized reinforced concrete isolated footing", Int. Scholarly Scientific Res. Innovation, 7(4), 193-200.
  4. Aschheim, M., Hernandez-Montes, E. and Gil-Martin, L.M. (2008), "Design of optimally reinforced RC beam, column, and wall sections", J. Struct. Eng., 134(2), 231-239. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(231)
  5. Awad Z.K. (2013), "Optimization of a sandwich beam design: analytical and numerical solutions", Struct. Eng. Mech., 48(1), 93-102.
  6. Barros, M.H.F.M., Martins, R.A.F. and Barros, A.F.M. (2005), "Cost optimization of singly and doubly reinforced concrete beams with EC2-2001", Struct. Multidiscip. O., 30(3), 236-242. https://doi.org/10.1007/s00158-005-0516-2
  7. Bordignon, R. and Kripka, M. (2012), "Optimum design of reinforced concrete columns subjected to uniaxial flexural compression", Comput. Concrete, 9(5), 327-340. https://doi.org/10.12989/cac.2012.9.5.327
  8. Bowles, J.E. (2001), Foundation analysis and design, McGraw-Hill, New York, USA.
  9. Calabera-Ruiz, J. (2000), Calculo de Estructuras de Cimentacion, Intemac Ediciones, D.F., Mexico.
  10. Ceranic, B. and Fryer, C. (2000), "Sensitivity analysis and optimum design curves for the minimum cost design of singly and doubly reinforced concrete beams", Struct. Multidiscip. O., 20(4), 260-268. https://doi.org/10.1007/s001580050156
  11. Chen, Z.Y., Zhao, H. and Lou, M.L. (2016), "Seismic performance and optimal design of framed underground structures with lead-rubber bearings", Struct. Eng. Mech., 58(2), 259-276. https://doi.org/10.12989/sem.2016.58.2.259
  12. Das, B.M., Sordo-Zabay, E. and Arrioja-Juarez, R. (2006), Principios de ingenieria de cimentaciones, Cengage Learning Latin America, D.F., Mexico.
  13. Erdal, F. (2015), "The comparative analysis of optimal designed web expanded beams via improved harmony search method", Struct. Eng. Mech., 54(4), 665-691. https://doi.org/10.12989/sem.2015.54.4.665
  14. Errouane, H., Deghoul, N., Sereir, Z. and Chateauneuf, A. (2017), "Probability analysis of optimal design for fatigue crack of aluminium plate repaired with bonded composite patch", Struct. Eng. Mech., 61(3), 325-334. https://doi.org/10.12989/sem.2017.61.3.325
  15. Fleith de Medeiros, G. and Kripka, M. (2013), "Structural optimization and proposition of pre-sizing parameters for beams in reinforced concrete buildings", Comput. Concrete, 11(3), 253-270. https://doi.org/10.12989/cac.2013.11.3.253
  16. Gere, J.M., Goodno, B.J. (2009), Mechanics of Materials, Cengage Learning, New York, USA.
  17. Gonzalez-Cuevas, O.M. and Robles-Fernandez-Villegas, F. (2005), Aspectos fundamentales del concreto reforzado, Limusa, D.F., Mexico.
  18. Hans, G. (1985), "Flexural limit design of column footing", J. Struct. Eng., 111(11), 2273-2287. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:11(2273)
  19. Ha, T. (1993), "Optimum design of unstiffened built-up girders", J. Struct. Eng., 119(9), 2784-2792. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:9(2784)
  20. Jarmai, K., Snyman, J.A., Farkas, J. and Gondos, G. (2003), "Optimal design of a welded I-section frame using four conceptually different optimization algorithms", Struct. Multidiscip. O., 25(1), 54-61. https://doi.org/10.1007/s00158-002-0272-5
  21. Jiang, D. (1983), "Flexural strength of square spread footing", J. Struct. Eng., 109(8), 1812-1819. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(1812)
  22. Jiang, D. (1984), "Closure to "Flexural strength of square spread footing" by Da Hua Jiang (August, 1983)", J. Struct. Eng., 110(8), 1926-1926.
  23. Kao, C.H.S. and Yeh, I.C.H. (2014a), "Optimal design of reinforced concrete plane frames using artificial neural networks", Comput. Concrete, 14(4), 445-462. https://doi.org/10.12989/cac.2014.14.4.445
  24. Kao, C.H.S. and Yeh, I.C.H. (2014b), "Optimal design of plane frame structures using artificial neural networks and ratio variables", Struct. Eng. Mech., 52(4), 739-753. https://doi.org/10.12989/sem.2014.52.4.739
  25. Kaveh, A., Kalateh-Ahani, M. and Fahimi-Farzam, M. (2013), "Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm", Struct. Eng. Mech., 47(2), 227-245. https://doi.org/10.12989/sem.2013.47.2.227
  26. Kaveh, A. and Mahdavi, V.R. (2016a), "Nonlinear analysis based optimal design of double-layer grids using enhanced colliding bodies optimization method", Struct. Eng. Mech., 58(3), 555-576. https://doi.org/10.12989/sem.2016.58.3.555
  27. Kaveh, A. and Mahdavi, V.R. (2016b), "Optimal design of truss structures using a new optimization algorithm based on global sensitivity analysis", Struct. Eng. Mech., 61(3), 1093-1117.
  28. Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783
  29. Khajehzadeh, M., Taha M.R. and Eslami, M. (2014), "Multi-objective optimization of foundation using global-local gravitational search algorithm", Struct. Eng. Mech., 50(3), 257-273. https://doi.org/10.12989/sem.2014.50.3.257
  30. Kripka, M. and Chamberlain Pravia, Z.M. (2013), "Cold-formed steel channel columns optimization with simulated annealing method", Struct. Eng. Mech., 48(3), 383-394. https://doi.org/10.12989/sem.2013.48.3.383
  31. Kurian, N. P. (2005), Design of foundation systems, Alpha Science Int'l Ltd, New York, USA.
  32. Leps, M. and Sejnoha, M. (2003), "New approach to optimization of reinforced concrete beams", Comput. Struct., 81(18-19), 1957-1966. https://doi.org/10.1016/S0045-7949(03)00215-3
  33. Luevanos-Rojas, A., Faudoa-Herrera, J.G., Andrade-Vallejo, R.A. and Cano-Alvarez, M.A. (2013), "Design of isolated footings of rectangular form using a new model", Int. J. Innov. Comput. I., 9(10), 4001-4022.
  34. Luevanos-Rojas, A. (2014a), "Design of isolated footings of circular form using a new model", Struct. Eng. Mech., 52(4), 767-786. https://doi.org/10.12989/sem.2014.52.4.767
  35. Luevanos-Rojas, A. (2014b), "Design of boundary combined footings of rectangular shape using a new model", Dyna, 81(188), 199-208. https://doi.org/10.15446/dyna.v81n188.41800
  36. Luevanos-Rojas, A. (2015), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., 56(5), 745-765. https://doi.org/10.12989/sem.2015.56.5.745
  37. Luevanos-Rojas, A. (2016a), "Numerical experimentation for the optimal design of reinforced rectangular concrete beams for singly reinforced sections", Dyna, 83(196), 134-142.
  38. Luevanos-Rojas, A. (2016b), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyna, 83(196), 149-158. https://doi.org/10.15446/dyna.v83n196.51056
  39. Luevanos-Rojas, A. (2016c), "Un nuevo modelo para diseno de zapatas combinadas rectangulares de lindero con dos lados opuestos restringidos", Revista Alconpat, 6(2), 172-187.
  40. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017), "Optimal design for rectangular isolated footings using the real soil pressure", Ing. Invest., 37(2), 25-33.
  41. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017a), "Optimal dimensioning for the corner combined footings", Adv. Comput. Des., 2(2), 169-183. https://doi.org/10.12989/ACD.2017.2.2.169
  42. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017b), "A mathematical model for dimensioning of square isolated footings using optimization techniques: general case", Int. J. Innov. Comput. I., 13(1), 67-74.
  43. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017c), "A new mathematical model for design of square isolated footings for general case", Int. J. Innov. Comput. I., 13(4), 1149-1168.
  44. McCormac, J.C. and Brown, R.H. (2013), Design of Reinforced Concrete, John Wiley & Sons, Inc., D.F., Mexico.
  45. Nascimbene, R. (2013), "Analysis and optimal design of fiber-reinforced composite structures: sail against the wind", Wind Struct., 16(6), 541-560. https://doi.org/10.12989/was.2013.16.6.541
  46. Ozturk, H.T. and Durmus, A. (2013), "Optimum cost design of RC columns using artificial bee colony algorithm", Struct. Eng. Mech., 45(5), 643-654. https://doi.org/10.12989/sem.2013.45.5.643
  47. Punmia, B.C., Jain, K.J. and Arun, K.J. (2007), Limit State Design of Reinforced Concrete, Laxmi Publications (P) Limited, New York, USA.
  48. Rath, D.P., Ahlawat, A.S. and Ramaswamy, A. (1999), "Shape Optimization of RC Flexural Members", J. Struct. Eng.- ASCE, 125(12), 1439-1445. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:12(1439)
  49. Rahmanian, I., Lucet, Y. and Tesfamariam, S. (2014), "Optimal design of reinforced concrete beams: A review", Comput. Concrete, 13(4), 457-482. https://doi.org/10.12989/cac.2014.13.4.457
  50. Sahab, M.G., Ashour, A.F. and Toropov, V.V. (2005), "Cost optimization of reinforced concrete flat slab buildings", Eng. Struct., 27(3), 313-322. https://doi.org/10.1016/j.engstruct.2004.10.002
  51. Shayanfar, M.A., Ashoory, M., Bakhshpoori, T. and Farhadi, B. (2013), "Optimization of modal load pattern for pushover analysis of building structures", Struct. Eng. Mech., 47(1), 119-129. https://doi.org/10.12989/sem.2013.47.1.119
  52. Tiliouine, B. and Fedghouche, F. (2014), "Cost Optimization of reinforced high strength concrete T-sections in flexure", Struct. Eng. Mech., 49(1), 65-80. https://doi.org/10.12989/sem.2014.49.1.065
  53. Tomlinson, M.J. (2008), Cimentaciones, Diseno y Construccion, Trillas, D.F., Mexico.
  54. Varghese, P.C. (2009), Design of Reinforced Concrete Foundations, PHI Learning Pvt. Ltd., New York, USA.
  55. Wang, Y. and Kulhawy, F.H. (2008), "Economic design optimization of foundation", J. Geotech. Geoenviron., 134(8), 1097-1105.
  56. Wang, Y. (2009), "Reliability-based economic design optimization of spread foundations", J. Geotech. Geoenviron., 135(7), 954-959. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000013
  57. Zou, X.K., Chan, C.M., Li, G. and Wang, Q. (2007), "Multi objective optimization for performance-based design of reinforced concrete frames", J. Struct. Eng., 103(10), 1462-1474.