• Title/Summary/Keyword: Moment Based Model

Search Result 766, Processing Time 0.023 seconds

Bending moments in raft of a piled raft system using Winkler analysis

  • Jamil, Irfan;Ahmad, Irshad
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • Bending moments in the raft of a pile raft system is affected by pile-pile interaction and pile-raft interaction, amongst other factors. Three-Dimensional finite element program has to be used to evaluate these bending moments. Winkler type analysis is easy to use but it however ignores these interactions. This paper proposes a very simplified and novel method for finding bending moments in raft of a piled raft based on Winkler type where raft is supported on bed of springs considering pile-pile and pile-raft interaction entitled as "Winkler model for piled raft (WMPR)" The pile and raft spring stiffness are based on load share between pile and raft and average pile raft settlement proposed by Randolph (1994). To verify the results of WMPR, raft bending moments are compared with those obtained from PLAXIS 3D software. A total of sixty analysis have Performed varying different parameters. It is found that raft bending moments obtained from WMPR closely match with bending moments obtained from PLAXIS 3D. A comparison of bending moments ignoring any interaction in Winkler model is also made with PLAXIS-3D, which results in large difference of bending moments. Finally, bending moment results from eight different methods are compared with WMPR for a case study. The WMPR, though, a simple method yielded comparable raft bending moments with the most accurate analysis.

Source Mechanism of an Explosive Eruption at White Island Volcano, New Zealand, Determined from Waveform Inversions (모멘트 텐서를 이용한 White Island 화산분화 지진원 메커니즘 분석)

  • Han, Arim;Kim, Keehoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • We studied the source mechanisms of very-long-period event recorded at seismic station WIZ near White Island Volcano, New Zealand on August 4, 2012. Since seismic data at only one station were available, we conducted moment tensor inversion using three simplified models (explosion, crack, and pipe models). To constrain the moment tensor solution of seismic event, we computed synthetic data for each model to compare with observed data. Type and orientation for the best model is a crack at a depth of 1600 m with a dip of $80^{\circ}NE$ and a strike of $N80^{\circ}W$. We interpret that a deep explosion may have opened a crack for gases to escape, and the upward gas flow triggered the surface explosions four hours later as confirmed by a webcam. The interpretation based on moment tensor inversion is consistent with previous studies of geochemical data of the volcanic island.

Comparison of Seismic Performance of Steel Moment Frame according to Different Analytic Joint Models (국내 철골골조의 접합부모델에 따른 내진성능 비교)

  • 이준석;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.317-323
    • /
    • 2000
  • The purpose of this study is to compare the seismic resistant capacity inherent in ductile moment resisting frames using two different joint modeling. The difference between these two models is the capability for considering the panel zone deformation. For this purpose, 5 story steel moment frame is designed in compliance to the Korean seismic design provisions and the steel structure design standard. Nonlinear Static Procedure(NSP) and Nonlinear Dynamic Procedure(NDP) of this structure are carried out using two different joint models. Based on the results of NSP and NDP, the sensitivity of the response to analytical modeling is appraised. Also, it is proposed that for the highrise steel structures, the joint deformation should be accounted properly by the analytical model.

  • PDF

Stability analysis of semi-rigid composite frames

  • Wang, Jing-Feng;Li, Guo-Qiang
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.119-133
    • /
    • 2007
  • Based on stability theory of current rigid steel frames and using the three-column subassemblage model, the governing equations for determining the effective length factor (${\mu}$-factor) of the columns in semirigid composite frames are derived. The effects of the nonlinear moment-rotation characteristics of beam-to-column connections and composite action of slab are considered. Furthermore, using a two-bay three-storey composite frame with semi-rigid connections as an example, the effects of the non-linear moment-rotation characteristics of connections and load value on the ${\mu}$-factor are numerically studied and the ${\mu}$-factors obtained by the proposed method and Baraket-Chen's method are compared with those obtained by the exact finite element method. It was found that the proposed method has good accuracy and can be used in stability analysis of semi-rigid composite frames.

Experimental Study for the Aerodynamic Characteristics of Slanted-Base Ogive Cylinder (기저면이 경사진 Ogive실린더의 공력특성에 관한 실험적 연구)

  • 맹주성;양시영;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2664-2674
    • /
    • 1994
  • Drag, lift, and pitching moment measurements have been made on a range of slanted-base ogive cylinders, using the KANOMAX wind tunnel and balance system. Test Reynolds numbers(based on model maximum diameter) varied from $0.54{\times}10^{5}{\;}to{\;}1.56{\times}10^{5}$. Crossflow velocity maesurement was conducted by 5-hole pitot tube at $Re_{D}=1.46{\times}10^{5}$. For two base angle $({\theta}=30$ and 45 deg.), aerodynamic forces and moment were measured with increasing angle of attack(0~30 deg.). Two types of wake flow were observed, a quasisymetric turbulent closure or a longitudinal vortex flow. Aerodynamic characteristics differ dramatically between the two wake types. It was found that the drag, lift and pitching moment coefficients increased with increasing angle of attack.

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

Effects of Flexural Strengths of Double Composite Box Girder Bridges on Different Concrete Depths (이중합성 박스 거더교의 콘크리트 타설 두께에 따른 휨강도 변화)

  • 신동훈;성원진;심기훈;최지훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.285-290
    • /
    • 2002
  • The double composite box girder is a structural system filled with concrete at the bottom of the steel box in the negative moment region increasing the flexural strengths. Flexural strengths of the double composite steel box girders are investigated through a series of the experimental tests and the numerical analysis. The experimental tests are performed on the three kinds of steel box girders with the different concrete depths including loom, 15cm, and 20cm. Moment-curvature relations are calculated based on the sectional analysis method describing the nonlinear natures of concrete and steel. In the finite element analysis the nonlinear nature of concrete is described based on the three dimensional four-parameter constitutive model recently developed and that of steel is described based on von Mises failure criterion. The ultimate flexural capacities of the box girders predicted using sectional analysis and finite element analysis show good agreement with those of the experiments.

  • PDF

Simplified equations for Vierendeel design calculations of composite beams with web openings

  • Panedpojaman, Pattamad
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.401-416
    • /
    • 2018
  • Composite beams with web openings are vulnerable to Vierendeel bending failure. The available methods provide quite conservative estimates of Vierendeel bending resistance. An alternative design method to compute the resistance was proposed in this study, based on quadratic nonlinear interactions of normalized shear force, axial force and Vierendeel bending moment. The interactions of the top and bottom Tee section must satisfy mutual conditions to prevent the Vierendeel failure. The normalized shear force and Vierendeel bending moment of the composite part were used instead in the top Tee interaction. The top Tee axial force was computed based on force equilibrium. Based on a rigid-plastic model, the composite resistance is estimated using an effective slab width of the vertical shear resistance. On using the proposed method, nonlinear reductions due to shear loads and axial forces are not required, in contrast to prior methods. The proposed method was validated against experiments from literature. The method limitations and accuracy as well as the Vierendeel behavior were investigated by finite element simulations, with varied composite beam parameters. The proposed design loads are less conservative than earlier estimates and deviate less from the simulations.

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.