• 제목/요약/키워드: Molybdenum-99

검색결과 34건 처리시간 0.036초

Conceptual design of hybrid target for molybdenum-99 production based on heavywater

  • Ali Torkamani ;Ali Taghibi Khotbehsara ;Faezeh Rahmani ;Alexander Khelvas ;Alexander Bugaev ;Farshad Ghasemi
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1863-1870
    • /
    • 2023
  • Molybdenum-99 (99Mo) is used for preparing Technetium-99 m (99mTc), which is the most widely used isotope in nuclear medicine. In this work, a study for 99Mo production based on a high-power electron accelerator has been performed as an alternative approach to produce 99mTc. In this study, Monte Carlo MCNPX2.6 code has been used to examine a novel idea of simultaneous hybrid production of 99Mo via both photoneutron and neutron capture reactions using an electron accelerator in heavy water tank. It is expected that this conceptual design including an arrangement of metallic plates of 100Mo and 98Mo produces total activity of 97.5 Ci at the end of 20-h continuous e-beam irradiation (30 MeV, 10 mA).

알루미나에 의한 Fission 몰리브덴의 흡착과 탈착 특성 (Adsorption and Desorption Characteristics of Fission Molybdenum on Alumina)

  • 조경태;정원명;이종대
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.97-105
    • /
    • 1997
  • Mo-99(Molybdenum) is the only source of Tc-99m(Technetium) which is most frequently used in nuclear medical diagnostics and the demand is on the increase recently. Separation and refining of Mo-99 was investigated by adsorption and desorption on alumina. At pH=0.63, adsorption isotherm of Mo was fitted by Redlich & Peterson equation using the adsorption experimental data. It was found that the pore diffusion model ($D_p=1.4{\times}10^{-6}cm^2/s, K_f/=0.4 cm/s$) agreed well with batch adsorption experimental data. RTDs(Residence Time Distributions ) were measured and axial dispersion coefficients were obtained in the fixed bed absorber according to the changes of the flow rate using 0.05% -NaCl. From the adsorption experimental data, it was shown that the behavior of breakthroughs depended on flow rate. Mo recovery yield was increased as adsorption flow rate was increased and desorption flow rate was decreased.

  • PDF

Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

  • Lee, Seung-Kon;Beyer, Gerd J.;Lee, Jun Sig
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.613-623
    • /
    • 2016
  • Molybdenum-99 ($^{99}Mo$) is the most important isotope because its daughter isotope, technetium-99m ($^{99m}Tc$), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of $^{99}Mo$, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of $^{99}Mo$ technology developments. Most of the industrial-scale $^{99}Mo$ processes have been based on the fission of $^{235}U$. Recently, important issues have been raised for the conversion of fission $^{99}Mo$ targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of $^{99}Mo$ yield, caused by a significant reduction of $^{235}U$ enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission $^{99}Mo$ production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the $^{99}Mo$ production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

저농축 우라늄을 사용하는 핵분열 몰리브덴-99 생산에 관련된 방사성 폐기물 연구 (Radioactive Waste Issues Related to Production of Fission-based 99Mo by using Low Enriched Uranium (LEU))

  • 머흐무드 하산;류호진
    • 방사성폐기물학회지
    • /
    • 제13권2호
    • /
    • pp.155-161
    • /
    • 2015
  • 몰리브덴-99의 붕괴에 의해 생산되는 테크네튬-99m 은 방사선 진단에 중요한 역할을 담당하고 있다. 몰리브덴-99 는 주로 우라늄-235의 핵분열에 의해 생산되고 있으며, 이를 위해 고농축 우라늄 표적 또는 저농축 우라늄 표적이 연구로에서 조사된다. 현재는 고농축 우라늄의 사용에 따른 핵확산 문제를 저감하기 위해 저농축 우라늄 표적의 사용이 권장되고 있다. 본 연구는 몰리브덴-99 생산 시설의 계획 단계에서 방사성 폐기물 관리 전략을 정의하기 위하여 저농축 우라늄의 사용이 방사성 폐기물의 흐름에 미치는 영향을 분석하였다. 저농축 우라늄 표적 사용 시 우라늄 함유 폐기물의 부피가 6배 이상 증가하기 때문에 우라늄 고밀도 표적의 사용과 고온 정수압 압축법의 활용이 제안되었다.

방전가열형 구리증기레이저의 개발 (Development of the Discharge Heated Copper Vapor Laser)

  • 임창환;차병헌;성낙진;이종민
    • 한국광학회지
    • /
    • 제1권1호
    • /
    • pp.28-32
    • /
    • 1990
  • 방전가열형 구리증기레이저를 제작하였으며 그 동작특성을 조사하였다. 레이저관으로는 내경 25mm, 길이 106cm 인 고순도(99.8%) 알루미나관을 이용하였다. 방전전극은 molybdenum 튜브로 제작하였으며 전극간의 거리는 108cm 이었다. Ne 가스압력 40mbar, 충전전압 10kV, 반복률 5KHz, 레이저관 내부온도 $1500^{\circ}C$일 때 평균출력 10W를 얻었다.

  • PDF

리튬 이온 전지용 Si/Mo 다층박막 음극의 전기화학적 특성 (Electrochemical Characteristics of Si/Mo Multilayer Anode for Lithium-Ion Batteries)

  • 박종완
    • 한국재료학회지
    • /
    • 제16권5호
    • /
    • pp.297-301
    • /
    • 2006
  • Si/Mo multilayer anode consisting of active/inactive material was prepared using rf/dc magnetron sputtering. Molybdenum acts as a buffer against the volume change of the Silicon. Multilayer deposited on RT (reversible treatment) copper foil current collector to enhance adhesion between Silicon and copper foil. Deposited Silicon was identified as an amorphous. Amorphous has a relatively open structure than crystal structure, thus prevents the lattice expansion and has many diffusion paths of Li ion. When deposited time of Silicon and Molybdenum is 30 second and 2 second respectably, electrode has more capacity and good cycle stability. A 3000 nm thick multilayer was maintained 99% of the initial capacity (1624 $mAhg^{-1}$) after 100 cycles. As the increase of the multilayer thickness (4500 nm, 6000 nm), Si/Mo mutilayer anodes show aggravation cycle stability.

진공(眞空) 아크 용해(溶解)에 의한 몰리브덴 스크랩의 재활용(再活用) 및 정련(精鍊) (Recyling and refining of molybdenum scraps by vacuum arc melting)

  • 이백규;오정민;이승원;김상배;임재원
    • 자원리싸이클링
    • /
    • 제20권5호
    • /
    • pp.40-45
    • /
    • 2011
  • 본 연구는 전자산업용 몰리브덴 스크랩의 재활용을 위하여 수소 첨가 아르곤(Ar-H$_2$) 분위기의 진공 아크 용해(VAM)에 의한 정련 효과를 조사하였고 정련된 몰리브덴의 극미량 불순물은 글로방전 질량분석기(GDMS)를 이용하여 분석하였다. 텅스텐을 제외한 몰리브덴 내 대부분의 불순물은 Ar-H$_2$ VAM의 의하여 수 ppm 수준으로 제거되어 초기 몰리브덴 스크랩의 순도인 3N(99.95%)급에서 4N(99.995%)급으로 향상되었다. 또한 몰리브덴 내 가스 불순물인 C, N, O의 경우 초기 1290 ppm에서 Ar-H$_2$ VAM에 의해 132 ppm으로 감소함을 확인하였다. 따라서 본 연구는 플라즈마 및 전자빔 용해에 비해 경제적인 용해법인 진공 아크 용해에 의해 몰리브덴 스크랩의 재활용 가능성 및 정련효과를 확인할 수 있었다.

초미세 결정립을 가지는 몰리브덴의 제조 및 기계적 특성 (Fabrication of Ultra Fine Grained Molybdenum and Mechanical Properties)

  • 김세훈;서영익;김대건;석명진;김영도
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.235-241
    • /
    • 2010
  • Mo nanopowder was synthesized by ball-milling and subsequent hydrogen-reduction of $MoO_3$ powder. To fabricate ultra fine grained molybdenum, two-step sintering and spark plasma sintering process were employed. The grain size of specimen by two-step sintering and spark plasma sintering was around $0.6\;{\mu}m$ and $0.4\;{\mu}m$, respectively. Mechanical properties of ultra fine grained Mo with relative density of above 90% were significantly improved at room and high temperatures comparing to commercial bulk Mo of 99% relative density. This result was mainly explained by the grain size refinement due to diffusion-controlled sintering.

페치니 공정을 이용한 몰리브덴-텅스텐 나노 분말 제조 및 소결 특성 평가 (Fabrication and Sintering Behavior Analysis of Molybdenum-tungsten Nanopowders by Pechini Process)

  • 김수연;권태현;김슬기;이동주
    • 한국분말재료학회지
    • /
    • 제30권5호
    • /
    • pp.436-441
    • /
    • 2023
  • Molybdenum-tungsten (Mo-W) alloy sputtering targets are widely utilized in fields like electronics, nanotechnology, sensors, and as gate electrodes for TFT-LCDs, owing to their superior properties such as high-temperature stability, low thermal expansion coefficient, electrical conductivity, and corrosion resistance. To achieve optimal performance in application, these targets' purity, relative density, and grain size of these targets must becarefully controlled. We utilized nanopowders, prepared via the Pechini method, to obtain uniform and fine powders, then carried out spark plasma sintering (SPS) to densify these powders. Our studies revealed that the sintered compacts made from these nanopowders exhibited outstanding features, such as a high relative density of more than 99%, consistent grain size of 3.43 ㎛, and shape, absence of preferred orientation.

Nuclear Design Methodology of Fission Moly Target for Research Reactor

  • Cho, Dong-Keun;Kim, Myung-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.365-374
    • /
    • 1999
  • A nuclear design of fission moly production targets for a research reactor, HANARO was peformed. It was found that the use of MCNP-4A, ORIGEN-2 code was reliable for the analysis of production characteristics of $^{99}$ Mo in a target fuel at an irradiation holes. A parametric study was done for the optimization of target location, target dimension, target shape and fuel materials. It was shown that a fuel thickness was the most sensitive parameters and electro-deposited target gave the highest 99Mo yield ratio. A pellet target with vibro-compaction powder, however, showed the largest production capacity and better engineering feasibility even with less yield ratio. Ten kinds of optimized target design for both LEU and HEU satisfied all the given design constraints. The most favorable design was the HEU ring-shaped electro-deposited target, considered the safety limit, production yield, chemical process easiness, yield ratio, and amount of radioactive waste.

  • PDF