• Title/Summary/Keyword: Molybdenum-99

Search Result 34, Processing Time 0.021 seconds

Conceptual design of hybrid target for molybdenum-99 production based on heavywater

  • Ali Torkamani ;Ali Taghibi Khotbehsara ;Faezeh Rahmani ;Alexander Khelvas ;Alexander Bugaev ;Farshad Ghasemi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1863-1870
    • /
    • 2023
  • Molybdenum-99 (99Mo) is used for preparing Technetium-99 m (99mTc), which is the most widely used isotope in nuclear medicine. In this work, a study for 99Mo production based on a high-power electron accelerator has been performed as an alternative approach to produce 99mTc. In this study, Monte Carlo MCNPX2.6 code has been used to examine a novel idea of simultaneous hybrid production of 99Mo via both photoneutron and neutron capture reactions using an electron accelerator in heavy water tank. It is expected that this conceptual design including an arrangement of metallic plates of 100Mo and 98Mo produces total activity of 97.5 Ci at the end of 20-h continuous e-beam irradiation (30 MeV, 10 mA).

Adsorption and Desorption Characteristics of Fission Molybdenum on Alumina (알루미나에 의한 Fission 몰리브덴의 흡착과 탈착 특성)

  • 조경태;정원명;이종대
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.97-105
    • /
    • 1997
  • Mo-99(Molybdenum) is the only source of Tc-99m(Technetium) which is most frequently used in nuclear medical diagnostics and the demand is on the increase recently. Separation and refining of Mo-99 was investigated by adsorption and desorption on alumina. At pH=0.63, adsorption isotherm of Mo was fitted by Redlich & Peterson equation using the adsorption experimental data. It was found that the pore diffusion model ($D_p=1.4{\times}10^{-6}cm^2/s, K_f/=0.4 cm/s$) agreed well with batch adsorption experimental data. RTDs(Residence Time Distributions ) were measured and axial dispersion coefficients were obtained in the fixed bed absorber according to the changes of the flow rate using 0.05% -NaCl. From the adsorption experimental data, it was shown that the behavior of breakthroughs depended on flow rate. Mo recovery yield was increased as adsorption flow rate was increased and desorption flow rate was decreased.

  • PDF

Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

  • Lee, Seung-Kon;Beyer, Gerd J.;Lee, Jun Sig
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.613-623
    • /
    • 2016
  • Molybdenum-99 ($^{99}Mo$) is the most important isotope because its daughter isotope, technetium-99m ($^{99m}Tc$), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of $^{99}Mo$, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of $^{99}Mo$ technology developments. Most of the industrial-scale $^{99}Mo$ processes have been based on the fission of $^{235}U$. Recently, important issues have been raised for the conversion of fission $^{99}Mo$ targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of $^{99}Mo$ yield, caused by a significant reduction of $^{235}U$ enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission $^{99}Mo$ production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the $^{99}Mo$ production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

Radioactive Waste Issues Related to Production of Fission-based 99Mo by using Low Enriched Uranium (LEU) (저농축 우라늄을 사용하는 핵분열 몰리브덴-99 생산에 관련된 방사성 폐기물 연구)

  • Hassan, Muhmood ul;Ryu, Ho Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.155-161
    • /
    • 2015
  • Technetium-99m (99mTc) is an important, short-lived decay product of molybdenum-99 (99Mo), and it is considered the backbone of the modern nuclear diagnostic procedures. Since fission of 235U is the main source of production of 99Mo, either highly-enriched uranium (HEU) targets or low-enriched uranium (LEU) targets are irradiated in the research reactors. The use of LEU targets is being promoted by the international community to avoid the proliferation issues linked with the use of HEU. In order to define the waste management strategy at the planning stage of establishment of an LEU based 99Mo production facility, the impact of the use of LEU targets on the radioactive waste stream of the 99Mo production facility was analyzed. Because the volume of uranium waste is estimated to increase six times, the use of high uranium density targets and the utilization of hot isostatic pressing were recommended to reduce the increased waste volume from the use of LEU based targets.

Development of the Discharge Heated Copper Vapor Laser (방전가열형 구리증기레이저의 개발)

  • 임창환;차병헌;성낙진;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.28-32
    • /
    • 1990
  • We have constructed and operated a discharge heated copper vapor laser which generated green (510.6 nm) and yellow (578.2 nm) light. The plasma tube was made of high purity (99.8%) alumina tube which has an inner diameter 25 mm and a length 106 cm. The electrodes, made of molybdenum sheet, were separated 108 cm apart. The laser gave an average power of 10 W at repetition rate of 5 kHz, charging voltage of 10 kV, Ne buffer gas pressure of 40 mbar, and the laser tube temperature of $1500^{\circ}C$..

  • PDF

Electrochemical Characteristics of Si/Mo Multilayer Anode for Lithium-Ion Batteries (리튬 이온 전지용 Si/Mo 다층박막 음극의 전기화학적 특성)

  • Park, Jong-Wan;Ascencio Jorge A.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.297-301
    • /
    • 2006
  • Si/Mo multilayer anode consisting of active/inactive material was prepared using rf/dc magnetron sputtering. Molybdenum acts as a buffer against the volume change of the Silicon. Multilayer deposited on RT (reversible treatment) copper foil current collector to enhance adhesion between Silicon and copper foil. Deposited Silicon was identified as an amorphous. Amorphous has a relatively open structure than crystal structure, thus prevents the lattice expansion and has many diffusion paths of Li ion. When deposited time of Silicon and Molybdenum is 30 second and 2 second respectably, electrode has more capacity and good cycle stability. A 3000 nm thick multilayer was maintained 99% of the initial capacity (1624 $mAhg^{-1}$) after 100 cycles. As the increase of the multilayer thickness (4500 nm, 6000 nm), Si/Mo mutilayer anodes show aggravation cycle stability.

Recyling and refining of molybdenum scraps by vacuum arc melting (진공(眞空) 아크 용해(溶解)에 의한 몰리브덴 스크랩의 재활용(再活用) 및 정련(精鍊))

  • Lee, Back-Kyu;Oh, Jung-Min;Lee, Seoung-Won;Kim, Sang-Bae;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.40-45
    • /
    • 2011
  • We carried out to investigate the refining effect of molybdenum by Ar-H$_2$ vacuum arc melting(VAM) process for recycling Mo scrap. The purity of the Mo metals refined by VAM was evaluated using glow discharge mass spectromety(GDMS). From the result of GDMS, most impurities in the Mo metals except for W were removed by Ar-H$_2$ VAM down to a few mass ppm levels. The purity of the refined molybdenum scrap was improved up to 4N5(99.995%) from 3N(99.95%) of the initial Mo scrap. The amount of gaseous impurities such as C, N, and O in Mo scrap were decreased from 1290 ppm to 132 ppm. As a result, it is considered that a possibility of refining and cost-effective method for recycling Mo scrap by Ar-H$_2$ vacuum arc melting process was confirmed in this study.

Fabrication of Ultra Fine Grained Molybdenum and Mechanical Properties (초미세 결정립을 가지는 몰리브덴의 제조 및 기계적 특성)

  • Kim, Se-Hoon;Seo, Young-Ik;Kim, Dae-Gun;Suk, Myung-Jin;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.235-241
    • /
    • 2010
  • Mo nanopowder was synthesized by ball-milling and subsequent hydrogen-reduction of $MoO_3$ powder. To fabricate ultra fine grained molybdenum, two-step sintering and spark plasma sintering process were employed. The grain size of specimen by two-step sintering and spark plasma sintering was around $0.6\;{\mu}m$ and $0.4\;{\mu}m$, respectively. Mechanical properties of ultra fine grained Mo with relative density of above 90% were significantly improved at room and high temperatures comparing to commercial bulk Mo of 99% relative density. This result was mainly explained by the grain size refinement due to diffusion-controlled sintering.

Fabrication and Sintering Behavior Analysis of Molybdenum-tungsten Nanopowders by Pechini Process (페치니 공정을 이용한 몰리브덴-텅스텐 나노 분말 제조 및 소결 특성 평가)

  • Suyeon Kim;Taehyun Kwon;Seulgi Kim;Dongju Lee
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.436-441
    • /
    • 2023
  • Molybdenum-tungsten (Mo-W) alloy sputtering targets are widely utilized in fields like electronics, nanotechnology, sensors, and as gate electrodes for TFT-LCDs, owing to their superior properties such as high-temperature stability, low thermal expansion coefficient, electrical conductivity, and corrosion resistance. To achieve optimal performance in application, these targets' purity, relative density, and grain size of these targets must becarefully controlled. We utilized nanopowders, prepared via the Pechini method, to obtain uniform and fine powders, then carried out spark plasma sintering (SPS) to densify these powders. Our studies revealed that the sintered compacts made from these nanopowders exhibited outstanding features, such as a high relative density of more than 99%, consistent grain size of 3.43 ㎛, and shape, absence of preferred orientation.

Nuclear Design Methodology of Fission Moly Target for Research Reactor

  • Cho, Dong-Keun;Kim, Myung-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • A nuclear design of fission moly production targets for a research reactor, HANARO was peformed. It was found that the use of MCNP-4A, ORIGEN-2 code was reliable for the analysis of production characteristics of $^{99}$ Mo in a target fuel at an irradiation holes. A parametric study was done for the optimization of target location, target dimension, target shape and fuel materials. It was shown that a fuel thickness was the most sensitive parameters and electro-deposited target gave the highest 99Mo yield ratio. A pellet target with vibro-compaction powder, however, showed the largest production capacity and better engineering feasibility even with less yield ratio. Ten kinds of optimized target design for both LEU and HEU satisfied all the given design constraints. The most favorable design was the HEU ring-shaped electro-deposited target, considered the safety limit, production yield, chemical process easiness, yield ratio, and amount of radioactive waste.

  • PDF