• Title/Summary/Keyword: Molecular size

Search Result 1,693, Processing Time 0.036 seconds

Development of a Monitoring System for Water-borne Bacteria by a Molecular Technique, PCR-RFLP-sequence Analysis

  • Lee, Ji-Young;Jeong, Eun-Young;Lee, Kyu-sang;Seul-Ju;Kim, Jong-Bae;Kang, Joon-Wun;Lee, Hye-Young
    • Biomedical Science Letters
    • /
    • v.9 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • Since water borne infection causes acute diseases and results in spread of diseases by secondary infection, the prevention is very important. Therefore, it is necessary to have a method that is rapid and effective to monitor pathogenic bacteria in drinking water. In this study, we employed a systematic method, Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) analysis, to develop an effective monitoring system for possible bacterial contaminants in drinking water. For this purpose, PCR primers were derived from 992 bp region of the 16s rRNA gene that is highly conserved through the different species of prokaryotes. To test whether the PCR primers designed are indeed useful for detecting all the possible microbial contaminants in the water, the primers were used to amplify 16s rRNA regions of different microbial water-borne pathogens such as E. coli, Salmonella, Yersinia, Listeria, and Staphylococcus. As expected, all of tested microorganisms amplified expected size of PCR products indicating designed PCR primers for 16s rRNA indeed can be useful to amplify all different microbial water-borne pathogens in the water. Furthermore, to test whether these 16s rRNA based PCR primers can detect bacterial populations present in the water, water samples taken from diverse sources, such as river, tap, and sewage, were used for amplification. PCR products were for then subjected for cloning into a T-vector to generate a library containing 16s rRNA sequences from various bacteria. With cloned PCR products, RFLP analysis was done using PCR products digested with restriction enzyme such as Hae III to obtain species-specific RFLP profiles. After PCR-RFLP, the bacterial clones which showed the same RFLP profiles were regarded as the same ones, and the clones which showed distinctive RFLP profiles were subsequently subjected for sequence analysis for species identification. By this PCR-RFLP analysis, we were able to reveal diverse populations of bacteria living in water. In brief, in unsterilized natural river water, over 60 different species of bacteria were found. On the other hand, no PCR products were detected in drinking tap-water. The results from this study clearly indicate that the PCR-RFLP-sequence analysis can be a useful method for monitoring diverse, perhaps pathogenic bacteria contaminated in water in a rapid fashion.

  • PDF

Effect of Fluidized Bed Powdered Activated Carbon Impregnated by Iron Oxide Nano-particles on Enhanced Operation and NOM Removal of MF Membrane System (산화철 나노입자 표면개질 분말활성탄 유동층에 의한 MF 막 분리 공정의 운전 및 NOM 제거 효율 향상)

  • Kim, Sung-Su;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.332-339
    • /
    • 2011
  • Effects of powdered activated carbon impregnated by iron oxide nano particle (Impregnated PAC) on the microfiltration (MF) membrane system performance in NOM removal from water were investigated in this study. A fluidized bed column was employed as a pretreatment of MF membrane process. The Impregnated PAC bed was stably maintained at an upflow rate of 63 m/d without leakage of the Impregnated PAC particles, which provided a contact time of 29 minutes. A magnetic ring at the upper part of the column could effectively hold the overflowing discrete particles. The Impregnated PAC column demonstrated a significant enhancement in the MF membrane performance in terms of fouling prevention and natural organic matter (NOM) removal. Trans-membrane pressure of the MF membrane increased to 41 kPa in 98 hours of operation, while it could be maintained at 12 kPa with the Impregnated PAC pretreatment. Removal of NOM determined by dissolved organic carbon and UV254 was also enhanced from 46% and 51% to 75% and 84%, respectively, by the pretreatment. It was found that the Impregnated PAC effectively removed a wide range of different molecular-sized organic compounds from size exclusion analysis.

Pink Mold Rot on Unishiu Orange (Citrus unshiu Mac.) Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 감귤 분홍빛열매썩음병 발생)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Choi, Okhee;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.226-228
    • /
    • 2013
  • In 2012, a pink mold rot was observed on unishiu orange (Citrus unshiu Mac.) fruits at the Wholesale Market for Agricultural Products, Jinju, Korea. The symptom on unishiu orange was a water-soaked lesion on the surface of fruit, which later on enlarged to form softened brown rot lesions. The diseased fruits were covered with pink-colored mold, consisting of conidia and conidiophores of the pathogen. Optimum temperature for mycelial growth was $25^{\circ}C$. Conidia were hyaline, smooth, 2-celled, and thick-walled conidia with truncate bases, ellipsoidal to pyriform, characteristically held together zig-zag chains and $12-26{\times}8-12{\mu}m$ in size. Conidiophore was erect, colorless, unbranched, and 4-5 ${\mu}m$ wide. On the basis of mycological characteristics, pathogenicity test, and molecular analysis with complete ITS rDNA region, the causal fungus was identified as Trichothecium roseum (Pers.) Link ex Gray. This is the first report of pink mold rot caused by T. roseum on unishiu orange in Korea.

Current status of Ac/Ds mediated gene tagging systems for study of rice functional genomics in Korea (Ac/Ds 삽입 변이체를 이용한 벼 유전자 기능 연구)

  • Lee, Gang-Seob;Park, Sung-Han;Yun, Do-Won;Ahn, Byoung-Ohg;Kim, Chang-Kug;Han, Chang-Deok;Yi, Gi-Hwan;Park, Dong-Soo;Eun, Moo-Young;Yoon, Ung-Han
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.125-132
    • /
    • 2010
  • Rice is the staple food of more than 50% of the worlds population. Cultivated rice has the AA genome (diploid, 2n=24) and small genome size of only 430 megabase (haploid genome). As the sequencing of rice genome was completed by the International Rice Genome Sequencing Project (IRGSP), many researchers in the world have been working to explore the gene function on rice genome. Insertional mutagenesis has been a powerful strategy for assessing gene function. In maize, well characterized transposable elements have traditionally been used to clone genes for which only phenotypic information is available. In rice endogenous mobile elements such as MITE and Tos (Hirochika. 1997) have been used to generate gene-tagged populations. To date T-DNA and maize transposable element systems has been utilized as main insertional mutagens in rice. A main drawback of a T-DNA scheme is that Agrobacteria-mediated transformation in rice requires extensive facilities, time, and labor. In contrast, the Ac/Ds system offers the advantage of generating new mutants by secondary transposition from a single tagged gene. Revertants can be utilized to correlate phenotype with genotype. To enhance the efficiency of gene detection, advanced gene-tagging systems (i.e. activation, gene or enhancer trap) have been employed for functional genomic studies in rice. Internationally, there have been many projects to develop large scales of insertionally mutagenized populations and databases of insertion sites has been established. Ultimate goals of these projects are to supply genetic materials and informations essential for functional analysis of rice genes and for breeding using agronomically important genes. In this report, we summarize the current status of Ac/Ds-mediated gene tagging systems that has been launched by collaborative works from 2001 in Korea.

Cloning and Phylogenetic Characterization of Coat Protein Genes of Two Isolates of Apple mosaic virus from ¡?Fuji¡? Apple

  • Lee, Gung-Pyo;Ryu, Ki-Hyun;Kim, Hyun-Ran;Kim, Chung-Sun;Lee, Dong-Woo;Kim, Jeong-Soo;Park, Min-Hye;Noh, Young-Mi;Choi, Sun-Hee;Han, Dong-Hyun;Lee, Chang-Hoo
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.259-265
    • /
    • 2002
  • Apple mosaic virus (ApMV), a member of the genus Ilarvirus, was detected and isolated from diseased 'Fuji' apple (Malus domestica) in Korea. The coat protein (CP) genes of two ApMV strains, denoted as ApMV-Kl and ApMV-K2, were amplified by using the reverse transcription and polymerase chain reaction (RT-PCR) and were analyzed thereafter. The objectives were to define the molecular variability of genomic information of ApMV found in Korea and to develop virus-derived resistant gene source for making virus-resistant trans-genic apple. RT-PCR amplicons for the APMVS were cloned and their nucleotide sequences were determined. The CPs of ApMV-Kl and ApMV-K2 consisted of 222 and 232 amino acid residues, respectively. The identities of the CPs of the two Korean APMVS were 93.1% and 85.6% at the nucleotide and amino acid sequences, respectively. The CP of ApMV-Kl showed 46.1-100% and 43.2-100% identities to eight different ApMV strains at the nucleotide and amino acid levels, respectively. When ApMV-PV32 strain was not included in the analysis, ApMV strains shared over 83.0% and 78.6% homologies at the nucleotide and amino acid levels, respectively. ApMV strains showed heterogeneity in CP size and sequence variability. Most of the amino acid residue differences were located at the N-termini of the strains of ApMV, whereas, the middle regions and C-termini were remarkably conserved. The APMVS were 17.(1-54.5% identical with three other species of the genus Ilarviyus. ApMV strains can be classified into three subgroups (subgroups I, II, and III) based on the phylogenetic analysis of CP gene in both nucleotide and amino acid levels. Interestingly, all the strains of subgroup I were isolated from apple plants, while the strains of subgroups II and III were originated from peach, hop, or pear, The results suggest that ApMV strains co-evolved with their host plants, which may have resulted in the CP heterogeneity.

Micelle Formation of Surfactant Solution(3) -Self-Diffusion and 1H Relaxation for Mixed Micelle of Nonionic and Ionic Surfactants- (계면활성제 수용액에서 미셀형성(제3보) -비이온성과 이온성계면활성제의 혼합 미셀에 있어 자기확산 및 프로톤 이완-)

  • Choi, Seung-Ok;Kwack, Kwang-Soo;Park, Heung-Jo;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.876-880
    • /
    • 1999
  • The surfactant self-diffusion coefficients of mixed micellar solutions of ionic and nonionic surfactants have been measured by the NMR pulsed field gradient spin echo(FT-PGSE) method. In addition, the line widths of $^1H$ NMR signal have been monitored. The system investgated are $C_{12}EO_5/SDS/D_2O$, $C_{12}EO_5/DTAC/D_2O$, and $C_{12}EO_8/SDS/D_2O$. In the sample series, the molar ratios of $D_2O$ to surfactant(ionic+nonionic) were kept constant while the surfactant mixing ratio was varied. For the $C_{12}EO_5$ system, the surfactant self-diffusion coefficient indicates minimum when the surfactant mixing ratio is about 20% ionic surfactant. The observed decrease in self-diffusion coefficients as nonionic surfactant was replaced by ionic surfactant is interpreted to mainly be due to an increased micelle-micelle repulsion. The increase in self-diffusion coefficients occurring at higher fraction of ionic surfactant is shown to be due to a decrease in micelle size. For the $C_{12}EO_8$ system, the effect of the surfactant mixing ratio is much weaker which can be understood by considering the molecular geometry and large headgroup area. The proton NMR line widths correlate well with the self-diffusion coefficients and broadening of the alkyl chain methylene signals is found when the self-diffusion coefficients is low.

  • PDF

Silk fibroin/hyaluronic acid blend sponge accelerates the wound healing in full-thickness skin injury model of rat (전층피부창상에서 실크피브로인과 하이알론산 혼합 스폰지의 창상치유효과)

  • Kang, Seuk-Yun;Roh, Dae-Hyun;Kim, Hyun-Woo;Yoon, Seo-Yeon;Kwon, Young-Bae;Kweon, HaeYong;Lee, Kwang-Gill;Park, Young-Hwan;Lee, Jang-Hern
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.305-313
    • /
    • 2006
  • The primary goal of the wound healing is rapid wound closure. Recent advances in cellular and molecular biology have greatly expanded our understanding of the biologic processes involved in wound repair and tissue regeneration. This study was conducted to develop a new sponge type of biomaterial to be used for either wound dressing or scaffold for tissue engineering. We designed to make a comparative study of the wound healing effect of silk fibroin/hyaluronic acid (SF/HA) blend sponge in full-thickness dermal injury model of rat. Two full-thickness excisions were made on the back of the experimental animals. The excised wound was covered with either the silk fibroin (SF), hyaluronic acid (HA) or SF/HA (7 : 3 or 5 : 5 ratio) blend sponge. On the postoperative days of 3, 7, 10 and 14, the wound area was calculated by image analysis software. Simultaneously, the tissues were stained with Hematoxylin-Eosin and Masson's trichrome methods to measure the area of regenerated epithelium and collagen deposition. In addition, we evaluated the degree of the epithelial cell proliferation using immunohistochemistry for proliferating cell nuclear antigen (PCNA). We found that the half healing time ($HT_{50}$) of SF/HA blend sponge treated groups were significantly decreased as compared with either those of SF or HA treatment group. Furthermore, SF/HA blend sponges significantly increased the size of epithelialization and collagen deposition as well as the number of PCNA positive cells on epidermal basement membrane as compared with those of control treatment. Especially, the 5 : 5 ratio group of SF/HA among all treatment groups was most effective on wound healing rate and histological studies. These results suggest that SF/HA blend sponges could accelerate the wound healing process through the increase of epithelialization, collagen deposition and basal cell proliferation in full thickness skin injury.

Harmfulness of Particulate Matter in Disease Progression (미세먼지의 질병에 미치는 유해성)

  • Choi, Jong Kyu;Choi, In Soon;Cho, Kwang Keun;Lee, Seung Ho
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.191-201
    • /
    • 2020
  • As society develops rapidly, environmental pollution is becoming a greater risk factor threatening human health. One of the major causes of air pollution that affects human health is particulate matter (PM), which contains a heterogeneous mixture of different particle sizes and chemical compositions. PM is classified by size into general PM (PM10; diameter below 10 ㎛) and fine PM (PM2.5; diameter below 2.5 ㎛). PM2.5 can pass through the respiratory tract into the circulatory system and thence throughout the body. PM2.5 is known to stimulate oxidative stress and inflammatory responses to cells, promoting diseases such as asthma, chronic respiratory disease, cardiovascular disease, diabetes mellitus, and immunological disorders. Although detailed molecular mechanisms for how PM stimulates disease progression still need to be elucidated, together with national efforts to reduce PM production, significant research has been conducted that demonstrates the harmfulness of PM in disease progression through in vitro and in vivo experiments. This review focuses on the harmfulness of PM in disease progression; we also introduce a biological verification method for determining the hazards of PM.

Development and Application of DNA Analysis Method for Identificaion of Main Ingredients in Starch (전분의 주원료 판별을 위한 유전자 분석법 개발 및 적용)

  • Park, Yong-Chjun;Kim, Mi-Ra;Kim, Yong-Sang;Lee, Ho-Yeon;Kim, Kyu-Heon;Lee, Jae-Hwang;Kim, Jae-I;Lee, Sang-Jae;Lee, Hwa-Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.181-187
    • /
    • 2013
  • Identification of main ingredients in starches has been investigated using physicochemical analysis method mainly. However, physicochemical properties such as particle size have limitations in determining the differences among mixed starches. Therefore, we developed a molecular biological method to identify materials used in starch, as a sample, 11 kinds of starches including sweet potato starch, potato starch, corn starch, and tapioca starch. DNeasy plant mini kit, magnetic DNA purification system, and CTAB methods were used to extract DNA from samples. After gene extraction, whole genome amplification (WGA) was performed to amplify the extracted DNA. Species-specific primers were used as followings: ib-286-F/ib-286-R (105 bp), Pss 01n-5'/Pss 01n-3' (216 bp), SS11b 3-5'/SS11b 3-3' (114 bp), and SSRY26-F/SSRY26-R (121 bp) gene for sweet potato, potato, corn, and tapioca, respectively. In this study, we could confirm the main ingredients using WGA and PCR method.

Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV

  • Pak, Jung-Hun;Chung, Eun-Sook;Shin, Sang-Hyun;Jeon, Eun-Hee;Kim, Mi-Jin;Lee, Hye-Young;Jeung, Ji-Ung;Hyung, Nam-In;Lee, Jai-Heon;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 2009
  • Oryza grandiglumis Chitinase IVa (OgChitIVa) cDNA encoding a class IV chitinase was cloned from wild rice (Oryza grandiglumis). OgChitIVa cDNA contains an open reading frame of 867 nucleotides encoding 288 amino acid residues with a predicted molecular weight of 30.4 kDa and isoelectric point of 8.48. Deduced amino acid sequences of OgChitIVa include the signal peptide and chitin-binding domain in the N-terminal domain and conserved catalytic domain. OgChitIVa showed significant similarity at the amino acid level with related monocotyledonous rice and maize chitinase, but low similarity with dicotyledoneous chitinase. Southern blot analysis showed that OgChitIVa genes are present as two copies in the wild rice genome. It was shown that RNA expression of OgChitIVa was induced by defense/stress signaling chemicals, such as jasmonic acid, salicylic acid, and ethephon or cantharidin and endothall or wounding, and yeast extract. It was demonstrated that overexpression of OgChitIVa in Arabidopsis resulted in mild resistance against the fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. RT-PCR analysis showed that PR-1 and PR-2 RNA expression was induced in the transgenic lines. Here, we suggest that a novel OgChitIVa gene may play a role in signal transduction process in defense response against B. cinerea in plants.