• Title/Summary/Keyword: Molecular mechanisms

Search Result 2,363, Processing Time 0.026 seconds

Dead cell phagocytosis and innate immune checkpoint

  • Yoon, Kyoung Wan
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.496-503
    • /
    • 2017
  • The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations.

Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe

  • Park, Jaehong;Lee, Dong-Hyun
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.181-190
    • /
    • 2020
  • Protein phosphatase 4 (PP4), one of serine/threonine phosphatases, is involved in many critical cellular pathways, including DNA damage response (DNA repair, cell cycle regulation, and apoptosis), tumorigenesis, cell migration, immune response, stem cell development, glucose metabolism, and diabetes. PP4 has been steadily studied over the past decade about wide spectrum of physiological activities in cells. Given the many vital functions in cells, PP4 has great potential to develop into the finding of key working mechanisms and effective treatments for related diseases such as cancer and diabetes. In this review, we provide an overview of the cellular and molecular mechanisms by which PP4 impacts and also discuss the functional significance of it in cell health.

The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions

  • Song, Young Hun
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.715-721
    • /
    • 2016
  • Plants have become physiologically adapted to a seasonally shifting environment by evolving many sensory mechanisms. Seasonal flowering is a good example of adaptation to local environmental demands and is crucial for maximizing reproductive fitness. Photoperiod and temperature are major environmental stimuli that control flowering through expression of a floral inducer, FLOWERING LOCUS T (FT) protein. Recent discoveries made using the model plant Arabidopsis thaliana have shown that the functions of photoreceptors are essential for the timing of FT gene induction, via modulation of the transcriptional activator CONSTANS (CO) at transcriptional and post-translational levels in response to seasonal variations. The activation of FT transcription by the fine-tuned CO protein enables plants to switch from vegetative growth to flowering under inductive environmental conditions. The present review briefly summarizes our current understanding of the molecular mechanisms by which the information of environmental stimuli is sensed and transduced to trigger FT induction in leaves.

SUPPRESSION OF HUMAN PROSTATE CANCER CELL GROWTH BY $\beta$-LAPACHONE VIA INHIBITION OF pRB PHOSPHORYLATION AND INDUCTION OF Cdk INHIBITOR $p21^{WAF1/CIP1}$

  • Park, Yung-Hyun;Kang, Ho-Sung;Yoo, Mi-Ae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.150-150
    • /
    • 2001
  • $\beta$ -lapachone, the product of a tree (Tabebuia avellanedae) from South America, is known to exhibit various pharmacologic properties, the mechanisms of which are poorly understood. The aim of the present study was to further elucidate the possible mechanisms by which $\beta$-lapachone exerts its anti-proliferative action in cultured human prostate cancer cells.(omitted)

  • PDF

Caloric restriction and its mimetics

  • Lee, Shin-Hae;Min, Kyung-Jin
    • BMB Reports
    • /
    • v.46 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • Caloric restriction is the most reliable intervention to prevent age-related disorders and extend lifespan. The reduction of calories by 10-30% compared to an ad libitum diet is known to extend the longevity of various species from yeast to rodents. The underlying mechanisms by which the benefits of caloric restriction occur have not yet been clearly defined. However, many studies are being conducted in an attempt to elucidate these mechanisms, and there are indications that the benefits of caloric restriction are related to alteration of the metabolic rate and the accumulation of reactive oxygen species. During molecular signaling, insulin/insulin-like growth factor signaling, target of rapamycin pathway, adenosine monophosphate activated protein kinase signaling, and Sirtuin are focused as underlying pathways that mediate the benefits of caloric restriction. Here, we will review the current status of caloric restriction.

Gustatory Receptors Required for Avoiding the Toxic Compound Coumarin in Drosophila melanogaster

  • Poudel, Seeta;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.310-315
    • /
    • 2016
  • Coumarin is a phenolic compound that mainly affects the liver due to its metabolization into a toxic compound. The deterrent and ovicidal activities of coumarin in insect models such as Drosophila melanogaster have been reported. Here we explore the molecular mechanisms by which these insects protect themselves and their eggs from this toxic plant metabolite. Coumarin was fatal to the flies in a dosage-dependent manner. However, coumarin feeding could be inhibited through activation of the aversive gustatory receptor neurons (GRNs), but not the olfactory receptor neurons. Furthermore, three gustatory receptors, GR33a, GR66a, and GR93a, functioned together in coumarin detection by the proboscis. However, GR33a, but not GR66a and GR93a, was required to avoid coumarin during oviposition, with a choice of the same substrates provided as in binary food choice assay. Taken together, these findings suggest that anti-feeding activity and oviposition to avoid coumarin occur via separate mechanisms.

A Review of Mechanisms of Implantation

  • Kim, Su-Mi;Kim, Jong-Soo
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.351-359
    • /
    • 2017
  • Implantation is a highly organized process that involves an interaction between a receptive uterus and a competent blastocyst. In humans, natural fecundity suggests that the chance of conception per cycle is relatively low (~30%) and two-third of lost pregnancies occur because of implantation failure. Defective implantation leads to adverse pregnancy outcomes including infertility, spontaneous miscarriage, intrauterine fetal growth restriction and preeclampsia. With use of advanced scientific technologies, gene expression analysis and genetically-engineered animal models have revealed critical cellular networks and molecular pathways. But, because of ethical restrictions and the lack of a mechanistic experiment, comprehensive steps in human implantation have still not been completely understood. This review primarily focuses on the recent advances in mechanisms of implantation. Because infertility is an emerging issue these days, gaining an understanding the molecular and hormonal signaling pathway will improve the outcome of natural pregnancy and assisted reproductive technology.

The Making of a Competent Oocyte - A Review of Oocyte Development and Its Regulation

  • Tukur, Hammed A.;Aljumaah, Riyadh S.;Swelum, Ayman Abdel-Aziz;Alowaimer, Abdullah N.;Saadeldin, Islam M.
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.2-11
    • /
    • 2020
  • Assisted reproductive technologies (ART) merely depend on improving the oocyte maturation and their developmental competence to produce good quality embryos. Oocyte maturation passes through long and complex molecular steps starts from the early embryonic life and ends with sperm fertilization. Oocyte developmental competence can be attained by improving the nuclear and cytoplasmic mechanisms together with some epigenetic maturation. In this review, we highlight the cornerstones of oocyte maturation on both nuclear and cytoplasmic levels. Interfering or supporting these molecular mechanisms would help in the development of novel regulating agents for reproductive performance of humans and livestock species.

Replication of deoxyribonucleic acid (DNA) with respect to gene technology

  • Esser, Karl;Oeser, Birgitt
    • The Microorganisms and Industry
    • /
    • v.12 no.1
    • /
    • pp.28-34
    • /
    • 1986
  • Nucleic acids do not only carry the genetic information, but are also the only substances being able of self-replication. Molecular cloning, an essential tool in biotechnology, requires among other things, an understanding of the mechanisms of replication which at present is fairly well known. After an introduction to the general principle, the status of art on replication procedure and its implication for biotechnology are dealt with.

  • PDF

Tamoxifen Resistance in Breast Cancer

  • Chang, Min-Sun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.256-267
    • /
    • 2012
  • Tamoxifen is a central component of the treatment of estrogen receptor (ER)-positive breast cancer as a partial agonist of ER. It has been clinically used for the last 30 years and is currently available as a chemopreventive agent in women with high risk for breast cancer. The most challenging issue with tamoxifen use is the development of resistance in an initially responsive breast tumor. This review summarizes the roles of ER as the therapeutic target of tamoxifen in cancer treatment, clinical values and issues of tamoxifen use, and molecular mechanisms of tamoxifen resistance. Emerging knowledge on the molecular mechanisms of tamoxifen resistance will provide insight into the design of regimens to overcome tamoxifen resistance and discovery of novel therapeutic agents with a decreased chance of developing resistance as well as establishing more efficient treatment strategies.