DOI QR코드

DOI QR Code

The Making of a Competent Oocyte - A Review of Oocyte Development and Its Regulation

  • Tukur, Hammed A. (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University) ;
  • Aljumaah, Riyadh S. (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University) ;
  • Swelum, Ayman Abdel-Aziz (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University) ;
  • Alowaimer, Abdullah N. (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University) ;
  • Saadeldin, Islam M. (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University)
  • Received : 2020.01.20
  • Accepted : 2020.03.12
  • Published : 2020.03.31

Abstract

Assisted reproductive technologies (ART) merely depend on improving the oocyte maturation and their developmental competence to produce good quality embryos. Oocyte maturation passes through long and complex molecular steps starts from the early embryonic life and ends with sperm fertilization. Oocyte developmental competence can be attained by improving the nuclear and cytoplasmic mechanisms together with some epigenetic maturation. In this review, we highlight the cornerstones of oocyte maturation on both nuclear and cytoplasmic levels. Interfering or supporting these molecular mechanisms would help in the development of novel regulating agents for reproductive performance of humans and livestock species.

Keywords

References

  1. Ajduk A, Malagocki A, Maleszewski M. 2008. Cytoplasmic maturation of mammalian oocytes: development of a mechanism responsible for sperm-induced Ca2+ oscillations. Reprod. Biol. 8:3-22. https://doi.org/10.1016/S1642-431X(12)60001-1
  2. Babayev E and Seli E. 2015. Oocyte mitochondrial function and reproduction. Curr. Opin. Obstet. Gynecol. 27:175-181. https://doi.org/10.1097/GCO.0000000000000164
  3. Branco MR, King M, Perez-Garcia V, Bogutz AB, Caley M, Fineberg E, Lefebvre L, Cook SJ, Dean W, Hemberger M, Reik W. 2016. Maternal DNA methylation regulates early trophoblast development. Dev. Cell 36:152-163. https://doi.org/10.1016/j.devcel.2015.12.027
  4. Britt JH. 2008. Oocyte development in cattle: physiological and genetic aspects. R. Bras. Zootec. 37:110-115. https://doi.org/10.1590/S1516-35982008001300013
  5. Brook M and Gray NK. 2012. The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochem. Soc. Trans. 40:856-864. https://doi.org/10.1042/BST20120100
  6. Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. 2018. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J. Reprod. Dev. 64:385-392. https://doi.org/10.1262/jrd.2018-029
  7. Comizzoli P, Paulson EE, McGinnis LK. 2018. The mutual benefits of research in wild animal species and human-assisted reproduction. J. Assist. Reprod. Genet. 35:551-560. https://doi.org/10.1007/s10815-018-1136-2
  8. Conti M and Franciosi F. 2018. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum. Reprod. Update 24:245-266. https://doi.org/10.1093/humupd/dmx040
  9. Conti M, Hsieh M, Zamah AM, Oh JS. 2012. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol. Cell. Endocrinol. 356:65-73. https://doi.org/10.1016/j.mce.2011.11.002
  10. Cotterill M, Harris SE, Collado Fernandez E, Lu J, Huntriss JD, Campbell BK, Picton HM. 2013. The activity and copy number of mitochondrial DNA in ovine oocytes throughout oogenesis in vivo and during oocyte maturation in vitro. Mol. Hum. Reprod. 19:444-450. https://doi.org/10.1093/molehr/gat013
  11. Cui J, Sartain CV, Pleiss JA, Wolfner MF. 2013. Cytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila. Dev. Biol. 383:121-131. https://doi.org/10.1016/j.ydbio.2013.08.013
  12. De La Fuente R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM, Eppig JJ. 2004. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev. Biol. 275:447-458. https://doi.org/10.1016/j.ydbio.2004.08.028
  13. Downs KM. 2018. Extragonadal primordial germ cells or placental progenitor cells? Reprod. Biomed. Online 36:6-11. https://doi.org/10.1016/j.rbmo.2017.09.013
  14. Edson MA, Nagaraja AK, Matzuk MM. 2009. The mammalian ovary from genesis to revelation. Endocr. Rev. 30:624-712. https://doi.org/10.1210/er.2009-0012
  15. Egbert JR, Shuhaibar LC, Edmund AB, Van Helden DA, Robinson JW, Uliasz TF, Baena V, Geerts A, Wunder F, Potter LR, Jaffe LA. 2014. Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes. Development 141:3594-3604. https://doi.org/10.1242/dev.112219
  16. Eichhorn SW, Subtelny AO, Kronja I, Kwasnieski JC, Orr-Weaver TL, Bartel DP. 2016. mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos. Elife 5:e16955. https://doi.org/10.7554/elife.16955
  17. Elahi F, Shin H, Lee J, Lee E. 2017. Endoplasmic stress inhibition during oocyte maturation improves preimplantation development of cloned pig embryos. J. Emb. Trans. 32:287-295. https://doi.org/10.12750/JET.2017.32.4.287
  18. Endo T, Naito K, Aoki F, Kume S, Tojo H. 2005. Changes in histone modifications during in vitro maturation of porcine oocytes. Mol. Reprod. Dev. 71:123-128. https://doi.org/10.1002/mrd.20288
  19. Eppig JJ. 1996. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod. Fertil. Dev. 8:485-489. https://doi.org/10.1071/RD9960485
  20. Fan HY and Sun QY. 2019. Oocyte Meiotic Maturation. In: Leung PCK and Adashi EY (Eds.), The Ovary. Academic Press, London, pp. 181-203.
  21. Ferreira EM, Vireque AA, Adona PR, Meirelles FV, Ferriani RA, Navarro PA. 2009. Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71:836-848. https://doi.org/10.1016/j.theriogenology.2008.10.023
  22. Forde N, Beltman ME, Lonergan P, Diskin M, Roche JF, Crowe MA. 2011. Oestrous cycles in Bos taurus cattle. Anim. Reprod. Sci. 124:163-169. https://doi.org/10.1016/j.anireprosci.2010.08.025
  23. Franciosi F, Lodde V, Goudet G, Duchamp G, Deleuze S, Douet C, Tessaro I, Luciano AM. 2012. Changes in histone H4 acetylation during in vivo versus in vitro maturation of equine oocytes. Mol. Hum. Reprod. 18:243-252. https://doi.org/10.1093/molehr/gar077
  24. Franco MM, Fagundes NS, Michalczechen-Lacerda VA, Caixeta ES, de Castro Rodrigues F, Machado GM, Ferreira AR, Dode MA. 2013. Characterisation of the methylation pattern in the intragenic CpG island of the IGF2 gene in Bos taurus indicus cumulus cells during in vitro maturation. J. Assist. Reprod. Genet. 31:115-120. https://doi.org/10.1007/s10815-013-0106-y
  25. Gahurova L, Tomizawa SI, Smallwood SA, Stewart-Morgan KR, Saadeh H, Kim J, Andrews SR, Chen T, Kelsey G. 2017. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenetics Chromatin 10:25. https://doi.org/10.1186/s13072-017-0133-5
  26. Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ, Thompson JG. 2016. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 152:R143-R157. https://doi.org/10.1530/REP-15-0606
  27. Gu L, Wang Q, Sun QY. 2010. Histone modifications during mammalian oocyte maturation: dynamics, regulation and functions. Cell Cycle 9:1942-1950. https://doi.org/10.4161/cc.9.10.11599
  28. Hanna CW, Demond H, Kelsey G. 2018. Epigenetic regulation in development: is the mouse a good model for the human? Hum. Reprod. Update 24:556-576. https://doi.org/10.1093/humupd/dmy021
  29. Harvey AJ. 2019. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 157:R159-R179. https://doi.org/10.1530/REP-18-0431
  30. Herrick JR. 2019. Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod. 100:1158-1170. https://doi.org/10.1093/biolre/ioz025
  31. Hummitzsch K, Hatzirodos N, Irving-Rodgers HF, Hartanti MD, Perry VEA, Anderson RA, Rodgers RJ. 2019. Morphometric analyses and gene expression related to germ cells, gonadal ridge epithelial-like cells and granulosa cells during development of the bovine fetal ovary. PLoS One 14:e0214130. https://doi.org/10.1371/journal.pone.0214130
  32. Hummitzsch K, Irving-Rodgers HF, Hatzirodos N, Bonner W, Sabatier L, Reinhardt DP, Sado Y, Ninomiya Y, Wilhelm D, Rodgers RJ. 2013. A new model of development of the mammalian ovary and follicles. PLoS ONE 8:e55578. https://doi.org/10.1371/journal.pone.0055578
  33. Hyttel P, Pessoa LVdeF, Secher JBM, Dittlau KS, Freude K, Hall VJ, Fair T, Assey RJ, Laurincik J, Callesen H, Greve T, Stroebech LB. 2019. Oocytes, embryos and pluripotent stem cells from a biomedical perspective. Anim. Reprod. 16:508-523. https://doi.org/10.21451/1984-3143-AR2019-0054
  34. Ivshina M, Lasko P, Richter JD. 2014. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol. 30:393-415. https://doi.org/10.1146/annurev-cellbio-101011-155831
  35. Jeseta M, Petr J, Krejcova T, Chmelikova E, Jilek F. 2008. In vitro ageing of pig oocytes: effects of the histone deacetylase inhibitor trichostatin A. Zygote 16:145-152. https://doi.org/10.1017/s0967199408004668
  36. Jin YX, Zhao MH, Zheng Z, Kwon JS, Lee SK, Cui XS, Kim NH. 2014. Histone deacetylase inhibitor trichostatin A affects porcine oocyte maturation in vitro. Reprod. Fertil. Dev. 26: 806-816. https://doi.org/10.1071/RD13013
  37. Jones ASK and Shikanov A. 2019. Follicle development as an orchestrated signaling network in a 3D organoid. J. Biol. Eng. 13:2. https://doi.org/10.1186/s13036-018-0134-3
  38. Kim J, Singh AK, Takata Y, Lin K, Shen J, Lu Y, Kerenyi MA, Orkin SH, Chen T. 2015. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice. Nat. Commun. 6:10116. https://doi.org/10.1038/ncomms10116
  39. Kuge H and Inoue A. 1992. Maturation of Xenopus laevis oocyte by progesterone requires poly(A) tail elongation of mRNA. Exp. Cell. Res. 202:52-58. https://doi.org/10.1016/0014-4827(92)90403-U
  40. Li J, Zhou W, Wang Y, Niu C. 2018. The dual role of cGMP in oocyte maturation of zebrafish. Biochem. Biophys. Res. Commun. 499:998-1003. https://doi.org/10.1016/j.bbrc.2018.04.037
  41. Maddox AS, Azoury J, Dumont J. 2012. Polar body cytokinesis. Cytoskeleton (Hoboken) 69:855-868. https://doi.org/10.1002/cm.21064
  42. Mao L, Lou H, Lou Y, Wang N, Jin F. 2014. Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod. Biomed. Online. 28:284-299. https://doi.org/10.1016/j.rbmo.2013.10.016
  43. Marlow F. 2015. Primordial germ cell specification and migration. F1000Res. 4:F1000 Faculty Rev-1462.
  44. Masui Y and Markert CL. 1971. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177:129-145. https://doi.org/10.1002/jez.1401770202
  45. Matoba S, O'Hara L, Carter F, Kelly AK, Fair T, Rizos D, Lonergan P. 2012. The association between metabolic parameters and oocyte quality early and late postpartum in Holstein dairy cows. J. Dairy Sci. 95:1257-1266. https://doi.org/10.3168/jds.2011-4649
  46. McNatty KP, Smith P, Hudson NL, Heath DA, Tisdall DJ, O WS, Braw-Tal R. 2019. Development of the sheep ovary during fetal and early neonatal life and the effect of fecundity genes. J. Reprod. Fertil. Suppl. 49:123-135.
  47. Moncrieff L, Mozdziak P, Jeseta M, Machatkova M, Kranc W, Kempisty B. 2019. Ovarian follicular cells - living in the shadow of stemness cellular competence. Med. J. Cell Biol. 7:134-140. https://doi.org/10.2478/acb-2019-0018
  48. Oh HI, Lee SH, Lee S, Lee ST, Lee E, Park CK. 2015. Role of Golgi apparatus on regulation of $Sec61{\beta}$, COPG2 and epidermal growth factor during oocyte maturation. Reprod. Dev. Biol. 39:37-41. https://doi.org/10.12749/RDB.2015.39.2.37
  49. Pan B and Li J. 2019. The art of oocyte meiotic arrest regulation. Reprod. Biol. Endocrinol. 17:8. https://doi.org/10.1186/s12958-018-0445-8
  50. Paulini F, Silva RC, Rolo JL, Lucci CM. 2014. Ultrastructural changes in oocytes during folliculogenesis in domestic mammals. J. Ovarian Res. 7:102. https://doi.org/10.1186/s13048-014-0102-6
  51. Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. 2008. A combinatorial code for CPE-mediated translational control. Cell 132:434-448. https://doi.org/10.1016/j.cell.2007.12.038
  52. Pirino G, Wescott MP, Donovan PJ. 2009. Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle 8:665-670. https://doi.org/10.4161/cc.8.4.7846
  53. Poirier M, Tesfaye D, Hailay T, Salilew-Wondim D, Gebremedhn S, Rings F, Neuhoff C, Schellander K, Hoelker M. 2020. Metabolism-associated genome-wide epigenetic changes in bovine oocytes during early lactation. Sci. Rep. 10:2345. https://doi.org/10.1038/s41598-020-59410-8
  54. Pryce JE, Royal MD, Garnsworthy PC, Mao IL. 2004. Fertility in the high-producing dairy cow. Livest. Prod. Sci. 86:125-135. https://doi.org/10.1016/S0301-6226(03)00145-3
  55. Racedo SE, Wrenzycki C, Lepikhov K, Salamone D, Walter J, Niemann H. 2009. Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation. Reprod. Fertil. Dev. 21:738-748. https://doi.org/10.1071/RD09039
  56. Reader KL, Stanton JL, Juengel JL. 2017. The role of oocyte organelles in determining developmental competence. Biology (Basel) 6:E35.
  57. Reyes JM and Ross PJ. 2016. Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdiscip. Rev. RNA 7:71-89. https://doi.org/10.1002/wrna.1316
  58. Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. 2018. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocr. Rev. 39:1-20. https://doi.org/10.1210/er.2017-00164
  59. Robert A, Hookway C, Gelfand VI. 2016. Intermediate filament dynamics: What we can see now and why it matters. Bioessays 38:232-243. https://doi.org/10.1002/bies.201500142
  60. Roeles J and Tsiavaliaris G. 2019. Actin-microtubule interplay coordinates spindle assembly in human oocytes. Nat. Commun. 10:4651. https://doi.org/10.1038/s41467-019-12674-9
  61. Saadeldin IM, Elsayed A, Kim SJ, Moon JH, Lee BC. 2015. A spatial model showing differences between juxtacrine and paracrine mutual oocyte-granulosa cells interactions. Indian J. Exp. Biol. 53:75-81.
  62. Saadeldin IM, Koo OJ, Kang JT, Kwon DK, Park SJ, Kim SJ, Moon JH, Oh HJ, Jang G, Lee BC. 2012. Paradoxical effects of kisspeptin: it enhances oocyte in vitro maturation but has an adverse impact on hatched blastocysts during in vitro culture. Reprod. Fertil. Dev. 24:656-668. https://doi.org/10.1071/RD11118
  63. Sendzikaite G and Kelsey G. 2019. The role and mechanisms of DNA methylation in the oocyte. Essays Biochem. 63:691-705. https://doi.org/10.1042/EBC20190043
  64. Sha QQ, Dai XX, Dang Y, Tang F, Liu J, Zhang YL, Fan HY. 2017. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development 144:452-463. https://doi.org/10.1242/dev.144410
  65. Sheets MD, Fox CA, Dowdle ME, Blaser SI, Chung A, Park S. 2017. Controlling the messenger: regulated translation of maternal mRNAs in Xenopus laevis development. Adv. Exp. Med. Biol. 953:49-82. https://doi.org/10.1007/978-3-319-46095-6_2
  66. Solc P, Schultz RM, Motlik J. 2010. Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol. Hum. Reprod. 16:654-664. https://doi.org/10.1093/molehr/gaq034
  67. Sorensen RA and Wassarman PM. 1976. Relationship between growth and meiotic maturation of the mouse oocyte. Dev. Biol. 50:531-536. https://doi.org/10.1016/0012-1606(76)90172-X
  68. Stelzer Y, Shivalila CS, Soldner F, Markoulaki S, Jaenisch R. 2015. Tracing dynamic changes of DNA methylation at single-cell resolution. Cell 163:218-229. https://doi.org/10.1016/j.cell.2015.08.046
  69. Stewart KR, Veselovska L, Kelsey G. 2016. Establishment and functions of DNA methylation in the germline. Epigenomics 8:1399-1413. https://doi.org/10.2217/epi-2016-0056
  70. Stewart KR, Veselovska L, Kim J, Huang J, Saadeh H, Tomizawa S, Smallwood SA, Chen T, Kelsey G. 2015. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev. 29:2449-2462. https://doi.org/10.1101/gad.271353.115
  71. Sun QY and Schatten H. 2006. Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 131:193-205. https://doi.org/10.1530/rep.1.00847
  72. Takagi Y, Talbot NC, Rexroad CE Jr, Pursel VG. 1997. Identification of pig primordial germ cells by immunocytochemistry and lectin binding. Mol. Reprod. Dev. 46:567-580. https://doi.org/10.1002/(SICI)1098-2795(199704)46:4<567::AID-MRD14>3.0.CO;2-T
  73. Tang LS, Wang Q, Xiong B, Hou Y, Zhang YZ, Sun QY, Wang SY. 2007. Dynamic changes in histone acetylation during sheep oocyte maturation. J. Reprod. Dev. 53:555-561. https://doi.org/10.1262/jrd.18130
  74. Taweechaipaisankul A, Jin JX, Lee S, Kim GA, Suh YH, Ahn MS, Park SJ, Lee BY, Lee BC. 2019. Improved early development of porcine cloned embryos by treatment with quisinostat, a potent histone deacetylase inhibitor. J. Reprod. Dev. 65:103-112. https://doi.org/10.1262/jrd.2018-098
  75. Terenzio M, Koley S, Samra N, Rishal I, Zhao Q, Sahoo PK, Urisman A, Marvaldi L, Oses-Prieto JA, Forester C, Gomes C, Kalinski AL, Di Pizio A, Doron-Mandel E, Perry RB, Koppel I, Twiss JL, Burlingame AL, Fainzilber M. 2018. Locally translated mTOR controls axonal local translation in nerve injury. Science 359:1416-1421. https://doi.org/10.1126/science.aan1053
  76. Tetkova A, Jansova D, Susor A. 2019. Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci. Rep. 9:13121. https://doi.org/10.1038/s41598-019-49483-5
  77. Viveiros MM and Fuente RDL. 2019. Regulation of mammalian oocyte maturation. In: Leung PCK and Adashi EY (Eds.), The Ovary. Academic Press, London, pp. 165-180.
  78. von Baer KE and O'Malley CD. 1956. On the genesis of the ovum of mammals and of man. Isis 47:117-153. https://doi.org/10.1086/348481
  79. Wang Q, Wang CM, Ai JS, Xiong B, Yin S, Hou Y, Chen DY, Schatten H, Sun QY. 2006. Histone phosphorylation and pericentromeric histone modifications in oocyte meiosis. Cell cycle 5:1974-1982. https://doi.org/10.4161/cc.5.17.3183
  80. Wang QL, Zhao MH, Jin YX, Kim NH, Cui XS. 2013. Gonadotropins improve porcine oocyte maturation and embryo development through regulation of maternal gene expression. J. Emb. Trans. 28:361-371. https://doi.org/10.12750/JET.2013.28.4.361
  81. Watson AJ. 2007. Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J. Anim. Sci. 85(13 Suppl):E1-E3. https://doi.org/10.2527/jas.2006-432
  82. Xu M, Qian J, Si L, Qu X, Li J. 2019. The effect of epigenetic changes on the extrusion of the first polar body in pig oocytes during in vitro maturation. Cell. Reprogram. 21:129-140. https://doi.org/10.1089/cell.2018.0071
  83. Yang J, Zhang Y, Xu X, Li J, Yuan F, Bo S, Qiao J, Xia G, Su Y, Zhang M. 2019. Transforming growth factor-${\beta}$ is involved in maintaining oocyte meiotic arrest by promoting natriuretic peptide type C expression in mouse granulosa cells. Cell Death Dis. 10:558. https://doi.org/10.1038/s41419-019-1797-5
  84. Young JM and McNeilly AS. 2010. Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489-504. https://doi.org/10.1530/REP-10-0094
  85. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10:68. https://doi.org/10.1186/s13287-019-1165-5