• Title/Summary/Keyword: Molecular aggregation

Search Result 233, Processing Time 0.026 seconds

Binding of Lichen Phenolics to Purified Secreted Arginase from the Lichen Evernia prunastri

  • Legaz, Maria-Estrella;Vicente, Carlos;Pedrosa, Mercedes M.
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.194-200
    • /
    • 2001
  • Secreted arginase from Evernia prunastri thallus has been purified 616-fold from the incubation medium. Purified arginase was resolved as only one peak in a capillary electrophoresis with a pI value of 5.35. The protein contained high amounts of acidic amino acids, such as Asx and Glx, and a relatively high quantity of Ser and Gly. The molecular mass of native, purified arginase was estimated as about 26 kDa by SE-HPLC. Substrate saturated kinetic showed a typical Michaelis-Menten relationship with a K_m value of 3.3 mM L-arginine. Atranorin behaved as a mixed activator of the enzyme (apparent $K_m$ = 0.96 mM); whereas evernic and usnic acid were revealed as non competitive inhibitors (apparent $K_m$ values were 3.16 mM and 3.05 mM, respectively). Kinetics of atranorin binding indicated that saturation was reached from 0.18 ${\mu}mol$ of the total atranorin and the occurrence of multiple sites for the ligand. This agrees with a possible aggregation of several enzyme subunits during the interaction process. A value of binding sites of about 12 was obtained. The binding of evernic acid was saturated from 23 nmol of total phenol. The number of binding sites was about 5. The loss of the binding ability of evernic acid could be interpreted as a single negative cooperatively. Usnic acid behaves in a similar way to evernic acid, although the binding saturation occurs at $0.14\;{\mu}moles$ of the ligand. This binding appears to be unspecific, and has 28 usnic acid binding sites to the protein.

  • PDF

Production of Soluble Human Granulocyte Colony Stimulating Factor in E. coli by Molecular Chaperones

  • PARK SO-LIM;SHIN EUN-JUNG;HONG SEUNG-PYO;JEON SUNG-JONG;NAM SOO-WAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1267-1272
    • /
    • 2005
  • The effects of coexpression of GroEL/ES and DnaK/DnaJ/GrpE chaperones on the productivity of the soluble form of human granulocyte colony stimulating factor (hG-CSF) in E. coli were examined. Recombinant hG-CSF protein was coexpressed with DnaK/DnaJ/GrpE or GroEL/ES chaperones under the control of the araB or Pzt-1 promoter, respectively. The optimal concentration of L-arabinose for the expression of DnaK/DnaJ/GrpE was found to be 1 mg/ml. When L-arabinose was added at $OD_{600}$=0.2 (early-exponential phase), soluble hG-CSF production was greatly increased. In addition, it was observed that the DnaK/DnaJ/GrpE and GroEL/ES chaperones had no synergistic effects on preventing aggregation of hG-CSF protein. Consequently, by coexpression of the DnaK/DnaJ/GrpE chaperone, the signal intensity of the hG-CSF protein band in the soluble fraction of cell lysate was increased from $3.5\%\;to\;13.9\%$, and Western blot analysis also revealed about a 4-5-fold increase of production of soluble hG-CSF over the non-induction case of DnaK/DnaJ/GrpE.

Molecular Dynamics Simulations on β Amyloid Peptide (25-35) in Aqueous Trifluoroethanol Solution

  • Lee, Sang-Won;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.838-842
    • /
    • 2004
  • Amyloid peptide (A${\beta}$) is the major component of senile plaques found in the brain of patient of Alzheimer's disease. ${\beta}$-amyloid peptide (25-35) (A${\beta}$25-35) is biologically active fragment of A${\beta}$. The three-dimensional structure of A${\beta}$25-35 in aqueous solution with 50% (vol/vol) TFE determined by NMR spectroscopy previously adopts an ${\alpha}$-helical conformation from $Ala^{30}$ to $Met^{35}$. It has been proposed that A${\beta}$(25-35) exhibits pH- and concentration-dependent ${\alpha}-helix{\leftrightarrow}{\beta}$sheet transition. This conformational transition with concomitant peptide aggregation is a possible mechanism of plaque formation. Here, in order to gain more insight into the mechanism of ${\alpha}$-helix formation of A${\beta}$25-35 peptide by TFE, which particularly stabilizes ${\alpha}$-helical conformation, we studied the secondary-structural elements of A${\beta}$25-35 peptide by molecular dynamics simulations. Secondary structural elements determined from NMR spectroscopy in aqueous TFE solution are preserved during the MD simulation. TFE/water mixed solvent has reduced capacity for forming hydrogen bond to the peptide compared to pure water solvent. TFE allows A${\beta}$25-35 to form bifurcated hydrogen bonds to TFE as well as to residues in peptide itself. MD simulation in this study supports the notion that TFE can act as an ${\alpha}$-helical structure forming solvent.

Monolayer Characteristics of Bilayer Forming Phosphate Amphiphiles (이분자막 형성능을 가지는 인산형 양친매성 화합물의 단분자막 특성)

  • ;Kunitake, T.
    • Membrane Journal
    • /
    • v.5 no.2
    • /
    • pp.89-96
    • /
    • 1995
  • The monolayer characteristics of phosphate amphiphiles with azobenzene at air/water interface were studied by the measurment of $\pi-A$ curves and absorption spectra. Immediately after being spread on the water surface, these amphiphiles having strong intermolecular hydrogen bonding interactions showed the typical absorption spectra which resulted from domain formation. But the aggregated domains could be controlled by changing the subphase conditions (adding bulky salt and rasing pH). Addition of metal ions in subphase changes the molecular orientation of monolayer. As the metal ion charge increases ($1\leq2$ < 3 < 4 valence), the absorption maximum (310nm) of the amphiphile with azobenzene shifts to a longer wavelength (350nm) which means that the orientation of the amphiphile is tilted. These results suggest that the molecular orientation, and furthermore the aggregation state of monolayer can be possibly controlled by the interaction of metal ions with different charge types.

  • PDF

Study on the Inhibitory Effect of Anti-Alzheimer in CT105-induced Neuro 2A Cell Lines by Gamiyaungshinhwan Water Extract (가미녕신환(加味寧神丸)이 CT105로 유도된 Neuro2A 세포주에서의 항치매 효과(效果))

  • Bang, Jae-Sun;Yoon, Hyun-Duk;Shin, Oh-Chul;Shin, Yoo-Jung;Park, Chi-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.603-616
    • /
    • 2006
  • The water extract of Gamiyaengshinhwan (GYH), has been used in vitro tests for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with CT105-related dementias and Alzheimer's disease(AD). CT105 derived from proteolytic processing of the $\beta$-amyloid precursor protein (APP), including the amyloid-$\beta$ peptide ($A{\beta}$), plays a critical role in the pathogenesis of Alzheimer's dementia. We determined that transfected overexpressing APP695 and $A{\beta}$ CT105 have a profound attenuation in the Increase in CT105 expressing neuro2A cells from GYH. Experimental evidence indicates that GYH protects against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. Using a neuroblastoma cell line stably expressing CT105-associated neuronal degeneration, we demonstrated that GYH inhibits formation of amyloid-$\beta$ fragment ($A{\beta}$ CT105). which are the characteristic, and possibly causative, features of AD. The decreased CT105 $A{\beta}$ in the presence of GYH was observed in the conditioned medium of this CT105-secreting cell line under in vitro. In the cells, GYH significantly attenuated mitochondrion-initiated apoptosis and decreased the activity of Bax, a key enzyme in the apoptosis cell-signaling cascade. These results suggest that neuronal damage in AD might be due to two factors: a direct CT05 toxicity and the apoptosis initiated by the mitochondria. Multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of CT105 aggregation, underlie the neuroprotective effects of GYH.

  • PDF

Synthesis of Well-Defined Block Copolymer Dispersants with (2-Dimethylamino)ethyl Methacrylate and Oligo(ethylene oxide)methyl Ether Methacrylate via ATRP for Dispersing Copper Phthalocyanine Pigment (Copper Phthalocyanine Pigment의 분산을 위한 (2-Dimethylamino)ethyl Methacrylate와 Oligo(ethylene oxide)methyl Ether Methacrylate를 포함하는 잘 규정된 블록 공중합체형 분산제의 원자 이동 라디칼 중합을 이용한 합성)

  • Kim, Eun-Hee;Kim, Bong-Soo;Jung, Ki-Suk;Kim, Jin-Goo;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.104-110
    • /
    • 2012
  • The dispersion of pigment particles is important because it is capable of increasing the color strength, contrast, and transmittance of color-LCD products. Pigment dispersion properties are very important factors for the quality of LCD color filters. The chemical structure of polymeric dispersants for pigment is important to improve dispersion stability and prevent aggregation or flocculation of pigment in organic or aqueous systems. Polymeric dispersants should contain both anchoring group that interacts with pigment surface and stabilizing group that provides steric stabilization. Moreover, the molecular weight and composition of block copolymer have the an effect on pigment dispersion. In this study, adequate dispersants, block copolymers containing (2-dimethylamino)ethyl methacrylate as anchoring group and oligo(ethylene oxide)methyl ether methacrylate as a stabilizing group were designed and synthesized by atom transfer radical polymerization in order to prepare well-defined structure, molecular weight and composition.

Distinct sets of lysosomal genes define synucleinopathy and tauopathy

  • Kyu Won Oh;Dong-Kyu Kim;Ao-Lin Hsu;Seung-Jae Lee
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.657-662
    • /
    • 2023
  • Neurodegenerative diseases are characterized by distinct protein aggregates, such as those of α-synuclein and tau. Lysosomal defect is a key contributor to the accumulation and propagation of aberrant protein aggregates in these diseases. The discoveries of common proteinopathies in multiple forms of lysosomal storage diseases (LSDs) and the identification of some LSD genes as susceptible genes for those proteinopathies suggest causative links between LSDs and the proteinopathies. The present study hypothesized that defects in lysosomal genes will differentially affect the propagation of α-synuclein and tau proteins, thereby determining the progression of a specific proteinopathy. We established an imaging-based high-contents screening (HCS) system in Caenorhabditis elegans (C. elegans) model, by which the propagation of α-synuclein or tau is measured by fluorescence intensity. Using this system, we performed RNA interference (RNAi) screening to induce a wide range of lysosomal malfunction through knock down of 79 LSD genes, and to obtain the candidate genes with significant change in protein propagation. While some LSD genes commonly affected both α-synuclein and tau propagation, our study identified the distinct sets of LSD genes that differentially regulate the propagation of either α-synuclein or tau. The specificity and efficacy of these LSD genes were retained in the disease-related phenotypes, such as pharyngeal pumping behavior and life span. This study suggests that distinct lysosomal genes differentially regulate the propagation of α-synuclein and tau, and offer a steppingstone to understanding disease specificity.

Solid-phase refolding of poly-lysine tagged fusion protein of hEGF and angiogenin

  • Park, Sang-Joong;Ryu, Kang;Chai, Young-Gyu;Kweon, Oh-Byung;Park, Seung-Kook;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.197-203
    • /
    • 2001
  • A fusion protein, consisting of human epidermal growth factor as a recognition domain and human angiogenin as a toxin domain, can be used as a targeted therapeutic against breast cancer cells among others. The fusion protein was expressed as inclusion body in recombinant E. coli, and when the conventional, solution-phase refolding process was used the refolding yield was very low due to severe aggregation, probably due to the opposite surface charge due to vastly different pI values of each domain. Solid-phase refolding process exploiting ionic interactions between the solid matrix and the protein was tried, but the ionic binding yield was very low regardless of the resins and pH conditions used. To provide higher affinity toward the solid matrix, six lysine residues were tagged to the N -terminus of the hEGF domain When the cation exchange resins such as heparin- or CM-Sepharose were used as the matrix, the adsorption capacity increased 2.5-3 times and the subsequent refolding yield increased nearly IS times compared to the conventional process.

  • PDF

Synthesis and Characterization of Thermosensitive Nanoparticles Based on PNIPAAm Core and Chitosan Shell Structure

  • Jung, Hyun;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Yang-Bae
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.265-270
    • /
    • 2009
  • Noble thermosensitive nanoparticles, based on a PNIPAAm-co-AA core and a chitosan shell structure, were designed and synthesized for the controlled release of the loaded drug. PNIPAAm nanoparticles containing a carboxylic group on their surface were synthesized using emulsion polymerization. The carboxylic groups were conjugated with the amino group of a low molecular weight, water soluble chitosan. The particle size of the synthesized nanoparticles was decreased from 380 to 25 nm as the temperature of the dispersed medium was increased. Chitosan-conjugated nanoparticles with $2{\sim}5$ wt% MBA, a crosslinking monomer, induced a stable aqueous dispersion at a concentration of 1mg/1mL. The chitosan-conjugated nanoparticles showed thermo sensitive behaviors such as LCST and size shrinkage that were affected by the PNIPAAm core and induced some particle aggregation around LCST, which was not shown in the NIPAAm-co-AA nanoparticles. These chitosan-conjugated nanoparticles are also expected to be more biocompatible than the PNIPAAm core itself through the chitosan shell structures.

The SH2 domain is crucial for function of Fyn in neuronal migration and cortical lamination

  • Lu, Xi;Hu, Xinde;Song, Lingzhen;An, Lei;Duan, Minghui;Chen, Shulin;Zhao, Shanting
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.97-102
    • /
    • 2015
  • Neurons in the developing brain form the cortical plate (CP) in an inside-out manner, in which the late-born neurons are located more superficially than the early-born neurons. Fyn, a member of the Src family kinases, plays an important role in neuronal migration by binding to many substrates. However, the role of the Src-homology 2 (SH2) domain in function of Fyn in neuronal migration remains poorly understood. Here, we demonstrate that the SH2 domain is essential for the action of Fyn in neuronal migration and cortical lamination. A point mutation in the Fyn SH2 domain ($Fyn^{R176A}$) impaired neuronal migration and their final location in the cerebral cortex, by inducing neuronal aggregation and branching. Thus, we provide the first evidence of the Fyn SH2 domain contributing to neuronal migration and neuronal morphogenesis.