• 제목/요약/키워드: Molecular Separation

검색결과 487건 처리시간 0.024초

Pulsed Electron Paramagnetic Resonance Application on the Photoinduced Charge Separation of Alkylphenothiazine Derivatives in Molecular Assemblies

  • Kang, Young-Soo;Park, Chan-Young
    • 한국자기공명학회논문지
    • /
    • 제4권2호
    • /
    • pp.82-90
    • /
    • 2000
  • Photoinduced charge separation of alkylphenothiazines in molecular assemblies such as positively, negatively and neutrally charged micelle interface results in the paramagnetic phenothiazine cation radical. This was studied as a model system for the light energy conversion into chemical energy. The photoproduced phenothaizne cation radical was identified and its amount was quantized with electron spin resonance (ESR). The microenvironment of photoproduced cation radical was studied with pulsed-ESR. Such a charge separation is enhanced by the optimization of various structural factors of the molecular assemblies. The structural factors of molecular assemblies have focused on the interface charge, interface structure with different headgroups and interfacial perturbation by disolving interface active organic additives.

  • PDF

Real-time identification of the separated lanthanides by ion-exchange chromatography for no-carrier-added Ho-166 production

  • Aran Kim;Kanghyuk Choi
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.69-77
    • /
    • 2021
  • No-carrier-added holmium-166 (n.c.a 166Ho) separation is performed based on the results of separation conditions using stable isotopes dysprosium (Dy) and holmium (Ho) to minimize radioactive waste from separation optimization procedures. Successful separation of two adjacent lanthanides was achieved by cation-exchange chromatography using a sulfonated resin in the H+ form (BP-800) and α-hydroxyisobutyric acid (α-HIBA) as eluent. For the identification process after separation of stable isotopes, the use of chromogenic reagents alternatively enables on-line detection because the lanthanides are hardly absorb light in the UV-vis region or exhibit radioactivity. Four different chromogenic reagents were pre-tested to evaluate suitable coloring reagents, of which 4-(2-Pyridylazo)resorcinol is the most recommendable considering the sensitivity and specificity for lanthanides. Lanthanide radioisotopes (RI) were monitored for separation with an RI detector using a lab-made separation LC system. Under the proper separation conditions, the n.c.a 166Ho was effectively obtained from a large amount of 100 mg dysprosium target within 2 hrs.

Rapid Separation of Cellular Cyclosophoraoses Produced by Rhizobium Species

  • Seo, Dong-Hyuk;Lee, Sang-Hoo;Park, Hey-Lin;Kwon, Tae-Jong;Jung, Seun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.522-525
    • /
    • 2002
  • A very rapid and efficient separation technique for cellular rhizobial cyclosophoraoses was developed based on fractional precipitation and partition chromatography. Cyclosophoraoses are known to function in the osmotic regulation and root nodule formation of legumes during the nitrogen fixation process. Cyclosophoraoses are produced as unbranched cyclic (1longrightarrow12)-${\beta}$-D-glucans in Agrobacterium or Rhizobium species. Recent research has shown that cyclosophoraoses can form inclusion complexation with various unstable or insoluble guest chemicals, thereby implying great potential for industrial application. Typical separation of pure cellular cyclosophoraoses has been so far carried out by several time-consuming steps, including size exclusion, anion exchange, and desalting liquid chromatographies, with a relatively poor recovery. However, the proposed method demonstrated that the successive application of fractional ethanol precipitation and one step of silica gel-based flash column chromatography was enough to simultaneously purify neutral or anionic forms of cyclosophoraoses. This novel technique is very rapid and provides a high recovery.

Chiral Separation of Lactic Acid in Culture Media and Cells of Lactobacillus delbrueckii subsp. lactis as O-Pentafluoropropionylated (S)-(+)-3-Methyl-2-Butyl Ester by Achiral Gas Chromatography-Mass Spectrometry

  • Paik, Man-Jeong;Nguyen, Duc-Toan;Yoon, Jae-Hwan;Chae, Han-Seung;Kim, Kyoung-Rae;Lee, Gwang;Lee, Pyung-Cheon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2418-2422
    • /
    • 2011
  • The enantiomeric separation of lactic acid for its absolute configuration has become important task for understanding its biological origin and metabolic process involved in the formation of lactic acid. It involves the conversion of enantiomers as diastereomeric O-pentafluoropropionylated (S)-(+)-3-methyl-2-butyl ester and the direct separation by gas chromatography-mass spectrometry on a achiral capillary column. The (R)- and (S)-lactic acids were completely separated with a high resolution of 1.9. The newly developed method showed good linearity (r ${\geq}$ 0.999), precision (% relative standard deviation = 3.4-6.2), and accuracy (% relative error = -7.7-1.4) with the detection limit of 0.011 ${\mu}g/mL$. When the method was applied to determine the absolute configuration of lactic acid in Lactobacillus delbrueckii subsp. lactis 304 (LAB 304), the composition (%) of (R)-lactic acid in the cell pellet and in the culture medium were $89.0{\pm}0.1$ and $78.2{\pm}0.4$, respectively. Thus, it was verified that the present method is useful for the identification and composition test of lactic enantiomers in microorganisms.

Radiochemical separation of 89Zr: a promising radiolabel for immuno-PET

  • Vyas, Chirag K.;Park, Jeong Hoon;Yang, Seung Dae
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.43-50
    • /
    • 2016
  • $^{89}Zr$ with the favorable nuclear decay kinetics and chemical properties is an appealing radiometal for its application in immuno-PET using radiolabeled monoclonal antibodies. Rising demand of ultrahigh purity and high-specific activity $^{89}Zr$ has propelled the radiochemist worldwide to develop an overall efficacious method for its promising separation from the target matrix $^{89}Y$. The requirement of elevated radiochemical purity (${\geq}$ 99.99%) has accelerated the efforts since last two decades to achieve higher decontamination and separation factors of carrier free $^{89}Zr$ over $^{89}Y$ using several suitable separation techniques. However, each of the technique has its own pros and cons which prior to its actual medical application needs to be optimized and thoroughly scrutinized to avoid further complications during radiolabelling of the pharmaceuticals. In this short review article we will specifically consider as well focus on the historical development and the recent advances on the radiochemical separation of $^{89}Zr$ from $^{89}Y$ which will be helpful for the separation scientist involved in this area to understand the existing available means and plan the strategy to investigate and develop the novel techniques to overcome the problems involved in the present methods.

컴팩트 타입 실리카막 공정을 이용한 수소 분리 (Hydrogen Separation by Compact-type Silica Membrane Process)

  • 문종호;배지한;이상진;정종태;이창하
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.336-339
    • /
    • 2006
  • With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance

  • PDF

복잡한 저분자량 분자 분리를 위한 시료 피크 용량 극대화 가이드 (A practical guide to maximizing sample peak capacity for complex low molecular mass molecule separations.)

  • Arianne Soliven;Matt James;Tony Edge
    • FOCUS: LIFE SCIENCE
    • /
    • 제1호
    • /
    • pp.9.1-9.5
    • /
    • 2024
  • Method development for complex low molecular mass (LMM) samples using reversed-phase (RP) separation conditions presents significant challenges due to the presence of many unknown analytes over wide concentration ranges. This guide aims to optimize method parameters-column length (L), temperature (T), flow rate (F), and final mobile phase conditions (Øfinal)-to maximize separation peak capacity. Validated by prior research, this protocol benefits laboratories dealing with metabolomics, natural products, and contaminant screening. This practical guide provides a structured approach to maximizing peak capacity for complex LMM separations. It complements computational optimization strategies and offers a step-by-step method development process. The Snyder-Dolan test is highlighted as essential for determining the need for gradient or isocratic elution and guiding column length decisions. The decision tree framework helps analysts prioritize variable optimization to develop effective separation methods for complex samples.

  • PDF