References
- O'Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH. Noninvasive molecular imaging for preclinical cancer therapeutic development. Brit J Pharmacol 2013;169:719-735. https://doi.org/10.1111/bph.12155
- Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005;104: 1129-1137.
- Buck AK, Herrmann K, Stargardt T, Dechow T, Krause BJ, Schreyogg J. Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med Tech 2010;38:6-17. https://doi.org/10.2967/jnmt.108.059584
- Verel I, Visser GW, van Dongen GA. The promise of immuno- PET in radioimmunotherapy. J Nucl Med 2005;46 Suppl 1:164S-171S.
- DeNardo SJ, Kroger LA, DeNardo GL. A new era for radiolabeled antibodies in cancer Curr Opin Immunol 1999;11:563-569.
- van Doden GAMS, Visser GWM, Lub-de Hooge MN, de Vries EG, Perk LR. Immuno-PET: A navigator in monoclonal antibody development and application. The Oncologist 2007;12:1379-1389. https://doi.org/10.1634/theoncologist.12-12-1379
- Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 2010;110: 2858-2902. https://doi.org/10.1021/cr900325h
- O'BRIEN HA, Overview of radionuclides useful for radioimmunoimaging and radioimmunotherapy and current status of preparing radiolabelled antibodies, in Radioimmunoimaging and Radioimmunotherapy. Amsterdam: Elsevier; 1983, p. 161.
-
Mejis WE, Herscheid JDM, Haishma HJ, Wijbrandts R, Langevelde FV, Leuffen PJV, Mooy R, Pinedo HM. Production of highly pure no-carrier added
$^{89}Zr$ for the labelling of antibodies with a positron emitter. Appl radiat isot 1994;45:1143-1147. https://doi.org/10.1016/0969-8043(94)90029-9 - Holland JP, Williamson MJ, Lewis JS. Unconventional nuclides for radiopharmaceuticals. Mol Imag 2010;9:1-20.
- Nayak TK, Brechbiel MW. Radioimmunoimaging with longerlived positron-emitting radionuclides: Potentials and challenges. Bioconj Chem 2009;20:825-841. https://doi.org/10.1021/bc800299f
- Anderson CJ, Welch MJ. Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem Rev 1999;99:2219-2234. https://doi.org/10.1021/cr980451q
- van de Watering FCJ, Rijpkema M, Perk L, Brinkmann U, Oyen WJG, Boerman OC. Zirconium-89 labeled antibodies: A new tool for molecular imaging in cancer patients. Biomed Res Int 2014; 2014:203601.
-
Mustafa MG, West HIJ, O'Brien H, Lanier RG, Benhamou M, Tamura T. Measurements and a direct-reaction plus Hauser-Feshbach analysis of
$^{89}Y(p,n)^{89}Zr,\,^{89}Y(p,2n)^{88}Zr,\,and\,^{89}Y(p,pn)^{88}Y$ reactions up to 40 MeV. Phys Rev C 1988;38:1624-1637. -
Verel I, Visser GWM, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GAMS.
$^{89}Zr$ immuno-PET: comprehensive procedures for the production of$^{89}Zr$ -labeled monoclonal antibodies. J Nucl Med 2003;44:1271-1281. - Ikotun OF, Lapi SE. The rise of metal radionuclides in medical imaging: Copper-64, Zirconium-89 and Yttrium-86. Future Med Chem 2011; 3:599-621. https://doi.org/10.4155/fmc.11.14
-
Deri MA, Zegli BM, Francesconi LC, Lewis JS. PET Imaging with
$^{89}Zr$ : From radiochemistry to the clinic. Nucl Med Biol 2013;40:3-14. https://doi.org/10.1016/j.nucmedbio.2012.08.004 - Sadeghi M, Enferadi M, Bakhtiari B. Accelerator production of the positron emitter zirconium-89. Ann Nucl Energy 2012;41: 97-103. https://doi.org/10.1016/j.anucene.2011.11.014
-
Ciarmatori A, Cicoria G, Pancaldi D, Infantino A, Boschi S, Fanti S, Marengo M. Some experimental studies on
$^{89}Zr$ production. Radiochim Acta 2011;99: 631-634. https://doi.org/10.1524/ract.2011.1822 -
Infantino A, Cicoria G, Pancaldi D, Ciarmatori A, Boschi S, Fanti S, Marengo M, Mostacci D. Prediction of
$^{89}Zr$ production using the Monte Carlo code FLUKA. Appl Radiat Isot 2011;69:1134-1137. https://doi.org/10.1016/j.apradiso.2010.11.027 -
Kandil SA, Scholten B, Saleh ZA, Youssef AM, Qaim SM, Coenen HH. A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and
$^{89}Zr$ in proton induced reactions on yttrium. J Radioanal Nucl chem 2007; 275:45-52. -
Khandaker MU, Kim KS, Lee MW, Kim KS, Kim G, Otuka N. Investigations of
$^{89}Y(p,x)^{86,88,89g}Zr, \,^{86m+g,87g,87m,88g}Y,\,^{85g}Sr,\,and\, ^{84g}Rb$ nuclear processes up to 42 MeV. Nucl Instrum Meth B 2012; 271:72-81. https://doi.org/10.1016/j.nimb.2011.11.009 - Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 2009;36:729-739. https://doi.org/10.1016/j.nucmedbio.2009.05.007
- Steinberg EP. The radiochemistry of zirconium and hafnium. Nuclear Science Series 1960.
- Larsen EM. Zirconium and hafnium chemistry. Adv Inorg Chem Radiochem 1970;13:1-103.
- Zhanga Y, Hong H, Caia W. PET Tracers Based on Zirconium-89. Curr Radiopharm 2011;4:131-139. https://doi.org/10.2174/1874471011104020131
-
Severin GW, Engle JW, Nickles RJ, Barnhart TE.
$^{89}Zr$ Radiochemistry for PET. Med Chem 2011;7:389-394. https://doi.org/10.2174/157340611796799186 - Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976;32:751-767. https://doi.org/10.1107/S0567739476001551
- Multi-agency radiological laboratory analytical protocols manual (NUREG-1576, Initial Report). 2004. p. 14-191.
- Ekberg C, Kallvenius G, Albinsson Y, Brown PL. Studies on the hydrolytic behaviour of zirconium (IV). J Solution Chem 2004; 33:47-79. https://doi.org/10.1023/B:JOSL.0000026645.41309.d3
- Singhal A, Toth LM, Lin JS, Affholter K. Zirconium (IV) tetramer/ octamer hydrolysis equilibrium in aqueous hydrochloric acid solution. J Am Chem Soc 1996;118:11529-11534.
- Harper RG, Harper PM, Hostrup M. Solvent based separation. In: Wilson ID, Adlar ER, Cooke M, Poole CF. Encyclopedia of separation science. 1st ed. Academic press; 2000. pp 1424-34.
-
Link JM, Krohn KA, Eary JF, Kishore R, Lewellen TK, Johnson MW, Badger CC, Richter KY, Nelp WB.
$^{89}Zr$ for antibody labeling and positron tomography. J Labelled Comp Radiopharm 1986;23:1296-1297. - Moore FL. Separation of zirconium from other elements by liquid- liquid extraction. Anal Chem 1956;13: 997-1001.
- Zweit J, Downey S, Sharma HL. Production of no-carrier-added zirconium-89 for positron emission tomography. Int J Rad Appl Instrum A: Appl Radiat Isot 1991;42:199-201. https://doi.org/10.1016/0883-2889(91)90074-B
-
Dejesus OT, Nickles RJ. Production and purification of
$^{89}Zr$ , a potential PET antibody label. Int J Rad Appl Instrum A: Appl Radiat Isot 1990;41:789-790. https://doi.org/10.1016/0883-2889(90)90030-K - Scadden EM, Ballou NE. Solvent extraction separations of zirconium and niobium. Anal Chem 1953;25:1602-1604. https://doi.org/10.1021/ac60083a007
-
Lahiri S, Mukhopadhyay B, Das NR. Simultaneous production of
$^{89}Zr\,and\,^{90,91m,92m}Nb$ in${\alpha}$ -particle activated yttrium and their subsequent separation by TOA. J Radioanal Nucl chem 1997;218: 229-231. https://doi.org/10.1007/BF02039340 -
Lahiri S, Mukhopadhyay B, Das NR. Simultaneous production of
$^{89}Zr\,and\,^{90,91m,92m}Nb$ in e-particle activated yttrium and their subsequent separation by HDEHP. Appl Radiat Isot 1997;48:883-886. -
Dutta B, Maiti M, Lahiri S. Production of
$^{88,89}Zr$ by Proton induced activation of natY and separation by SLX and LLX. J Radioanal Nucl chem 2009;281:663-667. https://doi.org/10.1007/s10967-009-0051-5 - Das NR, Lahiri S. Reversed phase chromatographic separation of zirconium, niobium and hafnium tracers with HDEHP. J Radioanal Nucl chem Artic 1992;163: 213-223. https://doi.org/10.1007/BF02034795
-
Herscheid JD, Vos CM, Hoekstra A. Manganese-52m for direct application: a new
$^{52}Fe/^{52m}Mn$ generator based on a hydroxamate resin. Int J Appl Radiat Isot 1983;34:883-886. https://doi.org/10.1016/0020-708X(83)90147-3 -
Wooten AL, Madrid E, Schweitzer GD, Lawrence LA, Mebrahtu E, Lewis BC, Lapi SE. Routine production of
$^{89}Zr$ using an automated module. Appl Sci 2013;3:593-613. https://doi.org/10.3390/app3030593 -
Wooten AL, Schweitzer GD, Lawrence LA, Madrid E, Lapi SE. An automated system for production of
$^{89}Zr$ . 14th International Workshop on targetry and target Chemistry AIP Conf. Proc.1509 2012;201-205. -
Siikanen J, Peterson M, tran TA, Roos P, Ohlsson T, Sandell. A peristaltic pump driven
$^{89}Zr$ separation module. 14th International Workshop on targetry and target Chemistry AIP Conf. Proc.1509 2012;206-212. - ZR Resin: Product sheet. Triskem Interational p. 2-4.