DOI QR코드

DOI QR Code

Radiochemical separation of 89Zr: a promising radiolabel for immuno-PET

  • Vyas, Chirag K. (Radiation Instrumentation Division, Korea Atomic Energy Research Institute) ;
  • Park, Jeong Hoon (Radiation Instrumentation Division, Korea Atomic Energy Research Institute) ;
  • Yang, Seung Dae (Radiation Instrumentation Division, Korea Atomic Energy Research Institute)
  • Received : 2016.06.08
  • Accepted : 2016.06.19
  • Published : 2016.06.30

Abstract

$^{89}Zr$ with the favorable nuclear decay kinetics and chemical properties is an appealing radiometal for its application in immuno-PET using radiolabeled monoclonal antibodies. Rising demand of ultrahigh purity and high-specific activity $^{89}Zr$ has propelled the radiochemist worldwide to develop an overall efficacious method for its promising separation from the target matrix $^{89}Y$. The requirement of elevated radiochemical purity (${\geq}$ 99.99%) has accelerated the efforts since last two decades to achieve higher decontamination and separation factors of carrier free $^{89}Zr$ over $^{89}Y$ using several suitable separation techniques. However, each of the technique has its own pros and cons which prior to its actual medical application needs to be optimized and thoroughly scrutinized to avoid further complications during radiolabelling of the pharmaceuticals. In this short review article we will specifically consider as well focus on the historical development and the recent advances on the radiochemical separation of $^{89}Zr$ from $^{89}Y$ which will be helpful for the separation scientist involved in this area to understand the existing available means and plan the strategy to investigate and develop the novel techniques to overcome the problems involved in the present methods.

Keywords

References

  1. O'Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH. Noninvasive molecular imaging for preclinical cancer therapeutic development. Brit J Pharmacol 2013;169:719-735. https://doi.org/10.1111/bph.12155
  2. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005;104: 1129-1137.
  3. Buck AK, Herrmann K, Stargardt T, Dechow T, Krause BJ, Schreyogg J. Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med Tech 2010;38:6-17. https://doi.org/10.2967/jnmt.108.059584
  4. Verel I, Visser GW, van Dongen GA. The promise of immuno- PET in radioimmunotherapy. J Nucl Med 2005;46 Suppl 1:164S-171S.
  5. DeNardo SJ, Kroger LA, DeNardo GL. A new era for radiolabeled antibodies in cancer Curr Opin Immunol 1999;11:563-569.
  6. van Doden GAMS, Visser GWM, Lub-de Hooge MN, de Vries EG, Perk LR. Immuno-PET: A navigator in monoclonal antibody development and application. The Oncologist 2007;12:1379-1389. https://doi.org/10.1634/theoncologist.12-12-1379
  7. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 2010;110: 2858-2902. https://doi.org/10.1021/cr900325h
  8. O'BRIEN HA, Overview of radionuclides useful for radioimmunoimaging and radioimmunotherapy and current status of preparing radiolabelled antibodies, in Radioimmunoimaging and Radioimmunotherapy. Amsterdam: Elsevier; 1983, p. 161.
  9. Mejis WE, Herscheid JDM, Haishma HJ, Wijbrandts R, Langevelde FV, Leuffen PJV, Mooy R, Pinedo HM. Production of highly pure no-carrier added $^{89}Zr$ for the labelling of antibodies with a positron emitter. Appl radiat isot 1994;45:1143-1147. https://doi.org/10.1016/0969-8043(94)90029-9
  10. Holland JP, Williamson MJ, Lewis JS. Unconventional nuclides for radiopharmaceuticals. Mol Imag 2010;9:1-20.
  11. Nayak TK, Brechbiel MW. Radioimmunoimaging with longerlived positron-emitting radionuclides: Potentials and challenges. Bioconj Chem 2009;20:825-841. https://doi.org/10.1021/bc800299f
  12. Anderson CJ, Welch MJ. Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem Rev 1999;99:2219-2234. https://doi.org/10.1021/cr980451q
  13. van de Watering FCJ, Rijpkema M, Perk L, Brinkmann U, Oyen WJG, Boerman OC. Zirconium-89 labeled antibodies: A new tool for molecular imaging in cancer patients. Biomed Res Int 2014; 2014:203601.
  14. Mustafa MG, West HIJ, O'Brien H, Lanier RG, Benhamou M, Tamura T. Measurements and a direct-reaction plus Hauser-Feshbach analysis of $^{89}Y(p,n)^{89}Zr,\,^{89}Y(p,2n)^{88}Zr,\,and\,^{89}Y(p,pn)^{88}Y$ reactions up to 40 MeV. Phys Rev C 1988;38:1624-1637.
  15. Verel I, Visser GWM, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GAMS. $^{89}Zr$ immuno-PET: comprehensive procedures for the production of $^{89}Zr$-labeled monoclonal antibodies. J Nucl Med 2003;44:1271-1281.
  16. Ikotun OF, Lapi SE. The rise of metal radionuclides in medical imaging: Copper-64, Zirconium-89 and Yttrium-86. Future Med Chem 2011; 3:599-621. https://doi.org/10.4155/fmc.11.14
  17. Deri MA, Zegli BM, Francesconi LC, Lewis JS. PET Imaging with $^{89}Zr$: From radiochemistry to the clinic. Nucl Med Biol 2013;40:3-14. https://doi.org/10.1016/j.nucmedbio.2012.08.004
  18. Sadeghi M, Enferadi M, Bakhtiari B. Accelerator production of the positron emitter zirconium-89. Ann Nucl Energy 2012;41: 97-103. https://doi.org/10.1016/j.anucene.2011.11.014
  19. Ciarmatori A, Cicoria G, Pancaldi D, Infantino A, Boschi S, Fanti S, Marengo M. Some experimental studies on $^{89}Zr$ production. Radiochim Acta 2011;99: 631-634. https://doi.org/10.1524/ract.2011.1822
  20. Infantino A, Cicoria G, Pancaldi D, Ciarmatori A, Boschi S, Fanti S, Marengo M, Mostacci D. Prediction of $^{89}Zr$ production using the Monte Carlo code FLUKA. Appl Radiat Isot 2011;69:1134-1137. https://doi.org/10.1016/j.apradiso.2010.11.027
  21. Kandil SA, Scholten B, Saleh ZA, Youssef AM, Qaim SM, Coenen HH. A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and $^{89}Zr$ in proton induced reactions on yttrium. J Radioanal Nucl chem 2007; 275:45-52.
  22. Khandaker MU, Kim KS, Lee MW, Kim KS, Kim G, Otuka N. Investigations of $^{89}Y(p,x)^{86,88,89g}Zr, \,^{86m+g,87g,87m,88g}Y,\,^{85g}Sr,\,and\, ^{84g}Rb$ nuclear processes up to 42 MeV. Nucl Instrum Meth B 2012; 271:72-81. https://doi.org/10.1016/j.nimb.2011.11.009
  23. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 2009;36:729-739. https://doi.org/10.1016/j.nucmedbio.2009.05.007
  24. Steinberg EP. The radiochemistry of zirconium and hafnium. Nuclear Science Series 1960.
  25. Larsen EM. Zirconium and hafnium chemistry. Adv Inorg Chem Radiochem 1970;13:1-103.
  26. Zhanga Y, Hong H, Caia W. PET Tracers Based on Zirconium-89. Curr Radiopharm 2011;4:131-139. https://doi.org/10.2174/1874471011104020131
  27. Severin GW, Engle JW, Nickles RJ, Barnhart TE. $^{89}Zr$ Radiochemistry for PET. Med Chem 2011;7:389-394. https://doi.org/10.2174/157340611796799186
  28. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976;32:751-767. https://doi.org/10.1107/S0567739476001551
  29. Multi-agency radiological laboratory analytical protocols manual (NUREG-1576, Initial Report). 2004. p. 14-191.
  30. Ekberg C, Kallvenius G, Albinsson Y, Brown PL. Studies on the hydrolytic behaviour of zirconium (IV). J Solution Chem 2004; 33:47-79. https://doi.org/10.1023/B:JOSL.0000026645.41309.d3
  31. Singhal A, Toth LM, Lin JS, Affholter K. Zirconium (IV) tetramer/ octamer hydrolysis equilibrium in aqueous hydrochloric acid solution. J Am Chem Soc 1996;118:11529-11534.
  32. Harper RG, Harper PM, Hostrup M. Solvent based separation. In: Wilson ID, Adlar ER, Cooke M, Poole CF. Encyclopedia of separation science. 1st ed. Academic press; 2000. pp 1424-34.
  33. Link JM, Krohn KA, Eary JF, Kishore R, Lewellen TK, Johnson MW, Badger CC, Richter KY, Nelp WB. $^{89}Zr$ for antibody labeling and positron tomography. J Labelled Comp Radiopharm 1986;23:1296-1297.
  34. Moore FL. Separation of zirconium from other elements by liquid- liquid extraction. Anal Chem 1956;13: 997-1001.
  35. Zweit J, Downey S, Sharma HL. Production of no-carrier-added zirconium-89 for positron emission tomography. Int J Rad Appl Instrum A: Appl Radiat Isot 1991;42:199-201. https://doi.org/10.1016/0883-2889(91)90074-B
  36. Dejesus OT, Nickles RJ. Production and purification of $^{89}Zr$, a potential PET antibody label. Int J Rad Appl Instrum A: Appl Radiat Isot 1990;41:789-790. https://doi.org/10.1016/0883-2889(90)90030-K
  37. Scadden EM, Ballou NE. Solvent extraction separations of zirconium and niobium. Anal Chem 1953;25:1602-1604. https://doi.org/10.1021/ac60083a007
  38. Lahiri S, Mukhopadhyay B, Das NR. Simultaneous production of $^{89}Zr\,and\,^{90,91m,92m}Nb$ in ${\alpha}$-particle activated yttrium and their subsequent separation by TOA. J Radioanal Nucl chem 1997;218: 229-231. https://doi.org/10.1007/BF02039340
  39. Lahiri S, Mukhopadhyay B, Das NR. Simultaneous production of $^{89}Zr\,and\,^{90,91m,92m}Nb$ in e-particle activated yttrium and their subsequent separation by HDEHP. Appl Radiat Isot 1997;48:883-886.
  40. Dutta B, Maiti M, Lahiri S. Production of $^{88,89}Zr$ by Proton induced activation of natY and separation by SLX and LLX. J Radioanal Nucl chem 2009;281:663-667. https://doi.org/10.1007/s10967-009-0051-5
  41. Das NR, Lahiri S. Reversed phase chromatographic separation of zirconium, niobium and hafnium tracers with HDEHP. J Radioanal Nucl chem Artic 1992;163: 213-223. https://doi.org/10.1007/BF02034795
  42. Herscheid JD, Vos CM, Hoekstra A. Manganese-52m for direct application: a new $^{52}Fe/^{52m}Mn$ generator based on a hydroxamate resin. Int J Appl Radiat Isot 1983;34:883-886. https://doi.org/10.1016/0020-708X(83)90147-3
  43. Wooten AL, Madrid E, Schweitzer GD, Lawrence LA, Mebrahtu E, Lewis BC, Lapi SE. Routine production of $^{89}Zr$ using an automated module. Appl Sci 2013;3:593-613. https://doi.org/10.3390/app3030593
  44. Wooten AL, Schweitzer GD, Lawrence LA, Madrid E, Lapi SE. An automated system for production of $^{89}Zr$. 14th International Workshop on targetry and target Chemistry AIP Conf. Proc.1509 2012;201-205.
  45. Siikanen J, Peterson M, tran TA, Roos P, Ohlsson T, Sandell. A peristaltic pump driven $^{89}Zr$ separation module. 14th International Workshop on targetry and target Chemistry AIP Conf. Proc.1509 2012;206-212.
  46. ZR Resin: Product sheet. Triskem Interational p. 2-4.