References
- Eldridge, R. B. Ind. Eng. Chem. Res. 1993, 32, 2208. https://doi.org/10.1021/ie00022a002
- Kumar, R.; Golden, T. C.; White, T. R.; Rokicki, A. Sep. Tech. 1992, 15, 2157.
- Peterson, D. L.; Helfferich, F.; Griep, R. K. in: Molecular Sieves p 217-229 Proc. 1st Int. Conf. On Molecular Sieves, London 1967 published by Soc. for Chem. Ind. in 1968.
- Gilliland, E. R.; Bliss, H. L.; Kip, C. E. J. Am. Chem. Soc. 1941, 63, 2088. https://doi.org/10.1021/ja01853a017
- Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. https://doi.org/10.1038/nature01650
- Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040. https://doi.org/10.1126/science.1116275
- Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S. H.; Seo, Y.-K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Angew. Chem., Int. Ed. 2008, 47, 4144. https://doi.org/10.1002/anie.200705998
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. https://doi.org/10.1126/science.1067208
- Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem., Int. Ed. 2004, 43, 2334. https://doi.org/10.1002/anie.200300610
- Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. https://doi.org/10.1126/science.283.5405.1148
- Pan, L.; Olson, D. H.; Ciemnolonski, L. R.; Heddy, R.; Li, J. Angew. Chem., Int. Ed. 2006, 45, 616. https://doi.org/10.1002/anie.200503503
- Wagener, A.; Schindler, M.; Rudolphi, F.; Ernst, S. Chem. Ing. Tech. 2007, 79, 851. https://doi.org/10.1002/cite.200700050
- Lamia, N.; Jorge, M.; Granato, M. A.; Almeida Paz, F. A.; Chevreau, H.; Rodrigues, A. E. Chem. Eng. Sci. 2009, 64, 3246. https://doi.org/10.1016/j.ces.2009.04.010
- Seo, Y.-K.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C.-H.; Chang, J.-S. Microp. Mesop. Mater. 2009, 119, 331. https://doi.org/10.1016/j.micromeso.2008.10.035
- Thomas, J. M.; Thomas, W. J. Introduction to the Principles of Heterogeneous Catalysis; Academic Press: New York, 1967; p 102.
- Chmelik, C.; Kärger, J.; Wiebcke, M.; Caro, J.; Van Baten, J. M.; Krishna, R. Micropor. Mesopor. Mater. 2009, 117, 22 https://doi.org/10.1016/j.micromeso.2008.06.003
- Wagener, A.; Rudolphi, F.; Schindler, M.; Ernst, S. Chem. Ing. Tech. 2006, 78, 1328.
- Yang, R. T. Gas Separation by Adsorption Process; Butterworth-Heinemann: Stoneham, MA, 1987; p 173.
- Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lanberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S. Chem. Mater. 2006, 18, 1337. https://doi.org/10.1021/cm052191g
- Chen, N.; Yang, R. T. Ind. Eng. Chem. Res. 1996, 35, 4020. https://doi.org/10.1021/ie960299n
Cited by
- Adsorption of Ethane, Ethylene, Propane, and Propylene on a Magnesium-Based Metal–Organic Framework vol.27, pp.22, 2011, https://doi.org/10.1021/la2030473
- Metal–Organic Frameworks for Separations vol.112, pp.2, 2012, https://doi.org/10.1021/cr200190s
- Synthesis and Adsorption/Catalytic Properties of the Metal Organic Framework CuBTC vol.16, pp.2, 2012, https://doi.org/10.1007/s10563-012-9135-2
- Microporous metal–organic frameworks for storage and separation of small hydrocarbons vol.48, pp.97, 2012, https://doi.org/10.1039/c2cc35418g
- Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons vol.5, pp.10, 2012, https://doi.org/10.1039/c2ee22858k
- Adsorption of Propane and Propylene on CuBTC Metal–Organic Framework: Combined Theoretical and Experimental Investigation vol.117, pp.21, 2013, https://doi.org/10.1021/jp401600v
- A Doubly Interpenetrated Metal–Organic Framework with Open Metal Sites and Suitable Pore Sizes for Highly Selective Separation of Small Hydrocarbons at Room Temperature vol.13, pp.5, 2013, https://doi.org/10.1021/cg400164m
- Ethene/Ethane and Propene/Propane Separation via the Olefin and Paraffin Selective Metal–Organic Framework Adsorbents CPO-27 and ZIF-8 vol.29, pp.27, 2013, https://doi.org/10.1021/la401471g
- Gas phase SMB for propane/propylene separation using enhanced 13X zeolite beads vol.20, pp.1, 2014, https://doi.org/10.1007/s10450-013-9549-9
- Hydrocarbon Separations in Metal–Organic Frameworks vol.26, pp.1, 2014, https://doi.org/10.1021/cm402897c
- Accurate Model for Predicting Adsorption of Olefins and Paraffins on MOFs with Open Metal Sites vol.53, pp.40, 2014, https://doi.org/10.1021/ie500310c
- Microporous Metal-Organic Frameworks for Gas Separation vol.9, pp.6, 2014, https://doi.org/10.1002/asia.201400031
- Exploiting Large-Pore Metal-Organic Frameworks for Separations through Entropic Molecular Mechanisms vol.16, pp.10, 2015, https://doi.org/10.1002/cphc.201500195
- Selective adsorption of ethylene over ethane on natural mordenite and on K+-exchanged mordenite vol.21, pp.1-2, 2015, https://doi.org/10.1007/s10450-015-9658-8
- Preparation and Properties of Metal Organic Framework/Activated Carbon Composite Materials vol.32, pp.19, 2016, https://doi.org/10.1021/acs.langmuir.6b00528
- vol.45, pp.34, 2016, https://doi.org/10.1039/C6DT02150F
- Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis vol.52, pp.25, 2016, https://doi.org/10.1039/C6CC00534A
- vol.55, pp.17, 2016, https://doi.org/10.1021/acs.iecr.6b00774
- Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures vol.9, pp.12, 2016, https://doi.org/10.1039/C6EE01886F
- Olefin/Paraffin Separation in Open Metal Site Cu-BTC Metal–Organic Framework vol.121, pp.5, 2017, https://doi.org/10.1021/acs.jpcc.6b11808
- Nanoporous Boron Nitride as Exceptionally Thermally Stable Adsorbent: Role in Efficient Separation of Light Hydrocarbons vol.9, pp.16, 2017, https://doi.org/10.1021/acsami.7b01889
- mixture vol.6, pp.40, 2018, https://doi.org/10.1039/C8TA04498H
- Microporous metal–organic frameworks with open metal sites and π-Lewis acidic pore surfaces for recovering ethylene from polyethylene off-gas vol.6, pp.42, 2018, https://doi.org/10.1039/C8TA06923A
- Metal-Organic Frameworks for Separation vol.30, pp.37, 2018, https://doi.org/10.1002/adma.201705189
- Controlled Reducibility of a Metal–Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption vol.122, pp.34, 2010, https://doi.org/10.1002/ange.201001230
- Controlled Reducibility of a Metal–Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption vol.49, pp.34, 2010, https://doi.org/10.1002/anie.201001230
- Propylene/propane separation by vacuum swing adsorption using Cu-BTC spheres vol.90, pp.None, 2012, https://doi.org/10.1016/j.seppur.2012.02.023
- Propane/propylene separation by adsorption using shaped copper trimesate MOF vol.157, pp.None, 2010, https://doi.org/10.1016/j.micromeso.2011.06.024
- New 13X zeolite for propylene/propane separation by vacuum swing adsorption vol.103, pp.None, 2010, https://doi.org/10.1016/j.seppur.2012.10.009
- Selective adsorption of olefin-paraffin on diamond-like frameworks: diamondyne and PAF-302 vol.1, pp.33, 2010, https://doi.org/10.1039/c3ta11205e
- One-pot synthesis of metal–organic framework@SiO2 core–shell nanoparticles with enhanced visible-light photoactivity vol.42, pp.38, 2010, https://doi.org/10.1039/c3dt50845e
- Olefin/Paraffin Separation Potential of ZIF‐9 and ZIF‐71: A Combined Experimental and Theoretical Study vol.2016, pp.27, 2016, https://doi.org/10.1002/ejic.201600695
- Adsorption of Propylene and Propane onto Mn+X (Mn+ = Cr3+ and/or Ni2+) Zeolites and Comparison between Binary and Ternary Exchanges vol.61, pp.10, 2010, https://doi.org/10.1021/acs.jced.6b00420
- Additive-Induced Supramolecular Isomerism and Enhancement of Robustness in Co(II)-Based MOFs for Efficiently Trapping Acetylene from Acetylene-Containing Mixtures vol.10, pp.36, 2018, https://doi.org/10.1021/acsami.8b11999
- A pillar-layer metal-organic framework for efficient adsorption separation of propylene over propane vol.204, pp.None, 2010, https://doi.org/10.1016/j.seppur.2018.04.046
- Highlighting the Influence of Thermodynamic Coupling on Kinetic Separations with Microporous Crystalline Materials vol.4, pp.2, 2010, https://doi.org/10.1021/acsomega.8b03480
- Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons vol.32, pp.3, 2010, https://doi.org/10.1002/adma.201806445
- Energy-efficient separation alternatives: metal-organic frameworks and membranes for hydrocarbon separation vol.49, pp.15, 2020, https://doi.org/10.1039/c9cs00756c
- Separation of propylene and propane with a microporous metal–organic framework via equilibrium‐kinetic synergetic effect vol.67, pp.1, 2010, https://doi.org/10.1002/aic.17094
- CO 2 / N 2 and O 2 / N 2 Separation Using MIXED‐MATRIX Membranes with MOF ‐74 Nanocrystals S vol.42, pp.3, 2010, https://doi.org/10.1002/bkcs.12217
- Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane vol.133, pp.35, 2010, https://doi.org/10.1002/ange.202106523
- Wiggling Mesopores Kinetically Amplify the Adsorptive Separation of Propylene/Propane vol.60, pp.35, 2010, https://doi.org/10.1002/anie.202106523
- Separation of alkane and alkene mixtures by metal-organic frameworks vol.9, pp.37, 2021, https://doi.org/10.1039/d1ta04096k
- Pore-Space Partition and Optimization for Propane-Selective High-Performance Propane/Propylene Separation vol.13, pp.44, 2021, https://doi.org/10.1021/acsami.1c10391
- Enhanced stability and activity of Cu-BTC by trace Ru3+ substitution in water photolysis for hydrogen evolution vol.11, pp.24, 2021, https://doi.org/10.1039/d1cy01505b