• Title/Summary/Keyword: Molecular Function

Search Result 2,419, Processing Time 0.024 seconds

Structure and Function of HtrA Family Proteins, the Key Players in Protein Quality Control

  • Kim, Dong-Young;Kim, Kyeong-Kyu
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.266-274
    • /
    • 2005
  • High temperature requirement A (HtrA) and its homologues constitute the HtrA familiy proteins, a group of heat shock-induced serine proteases. Bacterial HtrA proteins perform crucial functions with regard to protein quality control in the periplasmic space, functioning as both molecular chaperones and proteases. In contrast to other bacterial quality control proteins, including ClpXP, ClpAP, and HslUV, HtrA proteins contain no regulatory components or ATP binding domains. Thus, they are commonly referred to as ATP-independent chaperone proteases. Whereas the function of ATP-dependent chaperone-proteases is regulated by ATP hydrolysis, HtrA exhibits a PDZ domain and a temperature-dependent switch mechanism, which effects the change in its function from molecular chaperone to protease. This mechanism is also related to substrate recognition and the fine control of its function. Structural and biochemical analyses of the three HtrA proteins, DegP, DegQ, and DegS, have provided us with clues as to the functional regulation of HtrA proteins, as well as their roles in protein quality control at atomic scales. The objective of this brief review is to discuss some of the recent studies which have been conducted regarding the structure and function of these HtrA proteins, and to compare their roles in the context of protein quality control.

Molecular Mechanism of Parkinson's Disease

  • Chung, Jong-Kyeong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.49-52
    • /
    • 2008
  • Parkinson's disease is characterized by motor disturbances and dopaminergic neurodegeneration. parkin and PINK1, two most critical Parkinson's disease-associated genes, have been intensively studied to address the underlying molecular pathogenesis of the disease, but our understanding still remains unclear. Through generation and characterization of Drosophila mutants for PINK1, we show that PINK1 is required for mitochondrial integrity and function in both indirect flight muscles and dopaminergic neurons. Surprisingly, we find that PINK1 mutants share striking phenotypic similarities with parkin mutants. Indeed, transgenic expression of parkin dramatically ameliorates all PINK1 loss-of-function phenotypes, but not vice versa, implicating that Parkin acts downstream of PINK1 in maintaining mitochondrial integrity and function in both muscles and dopaminergic neurons. With the establishment of the PINK1-Parkin pathway, we are trying to further investigate the detailed molecular relationship between PINK1 and Parkin using both mammalian dopaminergic neuronal cells for biochemical analysis and Drosophila model animal for genetic analysis. We believe that elucidating the molecular function of Parkinson's disease-associated genes will be of big help for the ultimate understanding of the pathogenic mechanism of this disease and also for the development of effective drugs for Parkinson's disease.

  • PDF

FLUORESCENCE DEPOLARIZATION IN DIFFERENT MOLECULAR SYSTEMS

  • Kim, Hack-Jin;Kang, Tai-Jong
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1994
  • General features of the fluorescence depolarization are briefly reviewed. Molecular rotations and electronic excitation transports are considered to account for the fluorescence depolarization. Various molecular systems studied by the fluorescence depolarization are described. The FiSrster theory which forms a basis for the energy transfer is revisited. Several theoretical treatments for the fluorescence depolarization in liquid and solid phases such as classical hydrodynamics, probability distribution function, Green's function formalism, molecular dynamics simulation and Monte Carlo methods are introduced.

  • PDF

Crystal structure of the pretense domain of an ATP-independent heat shock protease HtrA

  • Kim, Dong-Young;Kim, Dong-Ryoung;Ha, Sung-Chul;Neratur K.Lokanath;Hwang, Hye-Yeon;Kim, Kyeong-Kyu
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.24-24
    • /
    • 2002
  • HtrA (high temperature requirement A), a periplasmic heat shock protein, is known to have molecular chaperone function at low temperatures and proteolytic activity at elevated temperatures. To investigate the mechanism of functional switch to pretense, we have determined the crystal structure of the N-terminal protease domain (PD) of HtrA from Thermotoga maritima. HtrA PD shares the same fold with chymotrypsin-like serine professes. However, crystal structure suggests that HtrA PD is not an active pretense at current state since its active site is not formed properly and blocked by an additional helical lid. On the surface of the lid, HtrA PD has hydrophobic patches that could be potential substrate binding sites for molecular chaperone activity. Present structure suggests that the activation of the proteolytic function of HtrA PD at elevated temperatures might occur by the conformational change.

  • PDF

Acetylation Enhances the Promoting Role of AIB1 in Breast Cancer Cell Proliferation

  • You, Dingyun;Zhao, Hongbo;Wang, Yan;Jiao, Yang;Lu, Minnan;Yan, Shan
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.663-668
    • /
    • 2016
  • The oncogene nuclear receptor coactivator amplified in breast cancer 1 (AIB1) is a transcriptional coactivator, which is overexpressed in various types of human cancers, including breast cancer. However, the molecular mechanisms regulating AIB1 function remain largely unknown. In this study, we present evidence demonstrating that AIB1 is acetylated by MOF in human breast cancer cells. Moreover, we also found that the acetylation of AIB1 enhances its function in promoting breast cancer cell proliferation. We further showed that the acetylation of AIB1 is required for its recruitment to E2F1 target genes by E2F1. More importantly, we found that the acetylation levels of AIB1 are greatly elevated in human breast cancer cells compared with that in non-cancerous cells. Collectively, our results shed light on the molecular mechanisms that regulate AIB1 function in breast cancer.

Molecular Dynamics Simulation of First-Order Phase Transition (일차 상변화 과정의 분자 동력학적 모사)

  • Lee, Jae-Yeon;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.161-166
    • /
    • 2004
  • A study of argon droplet vaporization is conducted using molecular dynamics. Instead of using traditional method such as the Navier-Stokes equation. Molecular dynamics uses Lagrangian frame to describe molecular behavior in a system and uses only momentum and position data of all molecules in the system. So every property is not a hypothetical input but a statistical result calculated from the momentum and position data. This work performed a simulation of the first-order stability for phase transition of a three dementional submicron argon droplet within quiescent environment. Lennard-Jones 12-6 potential function is used as a intermolecular potential function. The molecular configuration is examined while an initially non-sperical droplet is changed into the spherical shape and droplet evaporates or condensates.

  • PDF

Molecular Dynamics Simulation of Droplet Vaporization (분자 동력학을 이용한 액적 기화 시뮬레이션)

  • Nam, Gun-Woo;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.121-126
    • /
    • 2003
  • A study of argon droplet vaporization is conducted using molecular dynamics, instead of using traditional methods such as the Navier-Stokes equation. Molecular dynamics uses Lagrangian frame to describe molecular behavior in a system and uses only momentum and position data of all molecules in the system. So every property is not a hypothetical input but a statistical result calculated from the momentum and position data. This work performed a simulation of the complete vaporization of a three dimensional submicron argon droplet within quiescent environment. Lennard-Jones 12-6 potential function is used as a intermolecular potential function. The molecular configuration is examined while an initially non-spherical droplet is changed into the spherical shape and droplet evaporates. And the droplet radius versus time is calculated with temperature and pressure profile.

  • PDF

Bioinformatic approaches for the structure and function of membrane proteins

  • Nam, Hyun-Jun;Jeon, Jou-Hyun;Kim, Sang-Uk
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.697-704
    • /
    • 2009
  • Membrane proteins play important roles in the biology of the cell, including intercellular communication and molecular transport. Their well-established importance notwithstanding, the high-resolution structures of membrane proteins remain elusive due to difficulties in protein expression, purification and crystallization. Thus, accurate prediction of membrane protein topology can increase the understanding of membrane protein function. Here, we provide a brief review of the diverse computational methods for predicting membrane protein structure and function, including recent progress and essential bioinformatics tools. Our hope is that this review will be instructive to users studying membrane protein biology in their choice of appropriate bioinformatics methods.

Carboxylesterases: Structure, Function and Polymorphism

  • Satoh, Tetsuo;Hosokawa, Masakiyo
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.335-347
    • /
    • 2009
  • This review covers current developments in molecular-based studies of the structure and function of carboxylesterases. To allay the confusion of the classic classification of carboxylesterase isozymes, we have proposed a novel nomenclature and classification of mammalian carboxylesterases on the basis of molecular properties. In addition, mechanisms of regulation of gene expression of carboxylesterases by xenobiotics, and involvement of carboxylesterase in drug metabolism are also described.

Molecular Chaperones in Protein Quality Control

  • Lee, Suk-Yeong;Tsai, Francis T.F.
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.259-265
    • /
    • 2005
  • Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones re a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more 'conventional' chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.