• Title/Summary/Keyword: Molecular Detection

Search Result 1,108, Processing Time 0.038 seconds

Multiplex PCR for Simultaneous Detection of Aminoglycoside Resistance Genes in Escherichia coli and Klebsiella pneumoniae

  • Kim, Hyun Chul;Jang, Ji-Hyun;Kim, Hyogyeong;Kim, Young-Jin;Lee, Kyoung-Ryul;Kim, Yun-Tae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.3
    • /
    • pp.155-165
    • /
    • 2012
  • The purpose of this study was to develop a multiplex PCR for the detection of aac(6')-Ib, aph(3')-Ia, and ant(2")-Ia; the genes that encode the most clinically relevant aminoglycoside modifying enzymes (AMEs) in Gram-negative bacteria. Clinical isolates of 80 E. coli and 23 K. pneumoniae from tertiary university hospital were tested by multiplex PCR. The most prevalent AME gene was aac(6')-Ib which was found in 22.3% of the isolates. Of the total 80 E. coli isolates, 1 isolate was found to contain both aph(3')-Ia and ant(2")-Ia simultaneouly. Of the total 23 K. pneumoniae isolates, 2 isolates were found to contain both aac(6')-Ib and aph(3')-Ia, and 1 isolate was found to contain both aac(6')-Ib and ant(2")-Ia simultaneously. Annual (2005~2009) analysis of isolates that contain the AME genes were of no correlation. The sensitivity and specificity of multiplex PCR in detecting AME genes was 94.4% (34 of 36 cases) and 100%, respectively. We suggest the multiplex PCR method we developed could be highly sensitive and specific in detecting the AME genes of E. coli and K. pneumoniae. This study could be the first published investigation in which the multiplex PCR method detects aac(6')-Ib, aph(3')-Ia, and ant(2")-Ia genes.

  • PDF

Detection of Germline Mutations in Argentine Retinoblastoma Patients: Low and Full Penetrance Retinoblastoma Caused by the Same Germline Truncating Mutation

  • Dalamon, Viviana;Surace, Ezequiel;Giliberto, Florencia;Ferreiro, Veronica;Fernandez, Cecilia;Szijan, Irene
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.246-253
    • /
    • 2004
  • Constitutional RB1 gene mutations were studied in a series of 21 families with unilateral and bilateral retinoblastoma patients. Peripheral blood lymphocytes were analyzed by "exon by exon" PCR-heteroduplex and sequencing. Mutations were identified in 6 (29%) of the patients. One mutation corresponded to an intronic polymorphism in g.174351T > A. The other five mutations resulted C to T exonic transitions, four were CGA sequences (g.65386, g.150037 in two patients, and g.162237), creating stop codons and presumably truncated proteins. The fifth one was new and resulted in alanine to valine substitution (g.73774). Two patients had the same the germline truncated mutation (g.150037C > T), one with a familial bilateral early onset retinoblastoma and one with a sporadic unilateral late onset retinoblastoma. The later type has not been previously described. This finding is discussed in the genotype/phenotype correlation context. Additionally, a single nucleotide change was found in six studied samples, where a C to T homozygous transversion was identified in intron 26 (IVS26 + 28). It is worthy the non concordance of the nucleotide with the published sequence. This analysis proved to be a useful method for the detection of mutations in the RB1 gene, and contributed to the adequate genetic counseling to patients and relatives.

Direct Electrochemistry and Electrocatalysis of Myoglobin with CoMoO4 Nanorods Modified Carbon Ionic Liquid Electrode

  • Zhao, Zengying;Cao, Lili;Hu, Anhui;Zhang, Weili;Ju, Xiaomei;Zhang, Yuanyuan;Sun, Wei
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • By using ionic liquid 1-hexylpyridinium hexafluorophosphate ($HPPF_6$) based carbon ionic liquid electrode (CILE) as the substrate electrode, a $CoMoO_4$ nanorods and myoglobin (Mb) composite was casted on the surface of CILE with chitosan (CTS) as the film forming material to obtain the modified electrode (CTS/$CoMoO_4$-Mb/CILE). Spectroscopic results indicated that Mb retained its native structures without any conformational changes after mixed with $CoMoO_4$ nanorods and CTS. Electrochemical behaviors of Mb on the electrode were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks from the heme Fe(III)/Fe(II) redox center of Mb appeared, which indicated that direct electron transfer between Mb and CILE was realized. Electrochemical parameters such as the electron transfer number (n), charge transfer coefficient (${\alpha}$) and electron transfer rate constant ($k_s$) were estimated by cyclic voltammetry with the results as 1.09, 0.53 and 1.16 $s^{-1}$, respectively. The Mb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid in the concentration range from 0.1 to 32.0 mmol $L^{-1}$ with the detection limit as 0.036 mmol $L^{-1}$ ($3{\sigma}$), and the reduction of $H_2O_2$ in the concentration range from 0.12 to 397.0 ${\mu}mol\;L^{-1}$ with the detection limit as 0.0426 ${\mu}mol\;L^{-1}$ ($3{\sigma}$).

Microfluidic Immuno-Sensor Chip using Electrical Detection System (전기 검출 시스템을 이용한 Microfluidic Immuno-Sensor Chip)

  • Maeng, Joon-Ho;Lee, Byung-Chul;Cho, Chul-Ho;Ko, Yong-Jun;Ahn, Yoo-Min;Cho, Nahm-Gyoo;Lee, Seoung-Hwan;Hwang, Seung-Yong
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.325-330
    • /
    • 2006
  • This study presents the characterization of an integrated portable microfluidic electrical detection system for fast and low volume immunoassay using polystyrene microbead, which are used as immobilization surfaces. In our chip, a filtration method using the microbead was adopted for sample immobilization and immunogold silver staining(IGSS) was used to increase the electrical signal. The chip is composed of an inexpensive and biocompatible Polydimethylsiloxane(PDMS) layer and Pyrex glass substrate. Platinum microelectrodes for electric signal detection were fabricated on the substrate and microchannel and pillar-type microfilters were formed in the PDMS layer. With a fabricated chip, we reacted antigen and antibody according to the procedures. Then, silver enhancer was injected to increase the size of nanogold particles tagged with the second antibody. As a result, microbeads were connected to each other and formed an electrical bridge between microelectrodes. Resistance measured through the electrodes showed a difference of two orders of magnitude between specific and nonspecific immuno-reactions. The detection limit was 10 ng/ml. The developed immunoassay chip reduced the total analysis time from 3 hours to 50 min. Fast and low-volume biochemical analysis has been successfully achieved with the developed microfilter and immuno-sensor chip, which is integrated to the microfluidic system.

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Comparison of Loop-mediated Isothermal Amplification and Korea Standard Food Codex (KFSC) Method for Detection of Salmonella Typhimurium, Listeria monocytogenes Artificially Inoculated in Yuk-hwe and Yuk-sashimi (육회와 육사시미에 접종된 Salmonella Typhimurium와 Listeria monocytogenes 검출을 위한 Loop-mediated isothermal amplification와 식품공전의 배지 시험법, real-time PCR의 검출 성능 비교)

  • Gwak, Seung-Hae;Lee, So-Young;Kim, Jin-Hee;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.277-282
    • /
    • 2019
  • The object of this study is to compare the performance of the 3M Molecular Detection Assay 2 (3M MDA 2) and the Korea Standard Food Codex (KSFC) Method (i.e., isolation media and real-time PCR) in detecting Salmonella Typhimurium and Listeria monocytogenes in traditional Korean foods. Yuk-hwe and Yuk-sashimi (types of raw beef dishes) were artificially inoculated with $10^0-10^4CFU/25g$ of L. monocytogenes and S. Typhimurium. Citrobacter freundii and Listeria innocua were used as competitive microflora. After enrichment, the samples were analyzed using 3M MDA 2 and real-time PCR. All samples inoculated at concentrations of $10^0-10^4CFU/25g$ without competitive microflora were positive for S. Typhimurium and L. monocytogenes, as detected by 3M MDA 2 and Korea Standard Food Codex (KFSC) Method. In addition, part of the samples were positive for the presence of C. freundii and L. innocua. The 3M MDA 2 - Salmonella and Korea Standard Food Codex (KFSC) Method showed similar detection performances in Yuk-hwe and Yuk-sashimi. The 3M MDA 2 method for Salmonella and Listeria, which is a LAMP-based technology, can be used for rapid detection of S. Typhimurium and L. monocytogenes in raw beef. LAMP bioluminescence assays provide results on the subsequent day and are simple to use compared with the Korea Standard Food Codex (KFSC) Method, particularly in terms of DNA preparation.

Intestinal Permeabilities of Polyethylene Glycols (330-1122D) in the In Situ Perfused Rat (장내 관류된 동물에서 Polyethylene Glycols에 의한 장내 투과율 (Intestinal Permeability)측정에 관한 연구)

  • 김미혜
    • Journal of Nutrition and Health
    • /
    • v.29 no.2
    • /
    • pp.153-158
    • /
    • 1996
  • Polyethylene glycols(PEGs)are hydrophilic molecules that have been used to characterize intestinal permeability via the paracellular pathway. Using a mixture of PEGs(400, 600 and 1000), containing oligomers in the molecular weight range 330 to 1122 D, the molecular weight permeability dependence in the jejunum of the rat small intestine was examined, employing an in situ recirculation perfusion technique. Individual oligomers were determined by HPLC with refractive detection. In the range studied, a distinct molecular weight cut-off was not apparent. Corrected for the length of jejunum used in the study, over the molecular weight range 330 to 1122D, the apparent permeability(Papp) of PEG ranged from 4.92$\pm$0.02$\times$10-5cm/sec(mean$\pm$SEM, n=5) to 0.28$\times$10-5cm/sec. Also, it was observed that the apparent permeability was inversely proportional to approximately MW2. The results in this study suggest that molecular weight is an important factor in determining the intestinal permeability.

  • PDF

Biopsy and Mutation Detection Strategies in Non-Small Cell Lung Cancer

  • Jung, Chi Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.5
    • /
    • pp.181-187
    • /
    • 2013
  • The emergence of new therapeutic agents for non-small cell lung cancer (NSCLC) implies that histologic subtyping and molecular predictive testing are now essential for therapeutic decisions. Histologic subtype predicts the efficacy and toxicity of some treatment agents, as do genetic alterations, which can be important predictive factors in treatment selection. Molecular markers, such as epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement, are the best predictors of response to specific tyrosine kinase inhibitor treatment agents. As the majority of patients with NSCLC present with unresectable disease, it is therefore crucial to optimize the use of tissue samples for diagnostic and predictive examinations, particularly for small biopsy and cytology specimens. Therefore, each institution needs to develop a diagnostic approach requiring close communication between the pulmonologist, radiologist, pathologist, and oncologist in order to preserve sufficient biopsy materials for molecular analysis as well as to ensure rapid diagnosis. Currently, personalized medicine in NSCLC is based on the histologic subtype and molecular status. This review summarizes strategies for tissue acquisition, histologic subtyping and molecular analysis for predictive testing in NSCLC.

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

Analysis of Low Molecular Weight Collagen by Gel Permeation Chromatography

  • Yoo, Hee-Jin;Kim, Duck-Hyun;Park, Su-Jin;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.81-84
    • /
    • 2021
  • Collagen, which accounts for one-third of human protein, is reduced due to human aging, and much attention is focused on making collagen into food to prevent such aging. Gel permeation chromatography with Reflective Index (RI) detection (GPC/RI) was chosen as the most suitable instrument to confirm molecular weight distribution, and we explored the use of this technique for analysis of collagen peptide molecular sizes and distributions. Data reliability was verified by matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) mass spectrometric analysis. The data were considered meaningful for comparative analysis of molecular weight distribution patterns.