• Title/Summary/Keyword: Molecular Cluster

Search Result 501, Processing Time 0.021 seconds

Hycanthone Inhibits Inflammasome Activation and Neuroinflammation-Induced Depression-Like Behaviors in Mice

  • Kyung-Jun, Boo;Edson Luck, Gonzales;Chilly Gay, Remonde;Jae Young, Seong;Se Jin, Jeon;Yeong-Min, Park;Byung-Joo, Ham;Chan Young, Shin
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.161-167
    • /
    • 2023
  • Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.

Hypoxia-inducible factor 1α inhibitor induces cell death via suppression of BCR-ABL1 and Met expression in BCR-ABL1 tyrosine kinase inhibitor sensitive and resistant chronic myeloid leukemia cells

  • Masanobu Tsubaki;Tomoya Takeda;Takuya Matsuda;Akihiro Kimura;Remi Tanaka;Sakiko Nagayoshi;Tadafumi Hoshida;Kazufumi Tanabe;Shozo Nishida
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.78-83
    • /
    • 2023
  • Chronic myeloid leukemia (CML) has a markedly improved prognosis with the use of breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitors (BCR-ABL1 TKIs). However, approximately 40% of patients are resistant or intolerant to BCR-ABL1 TKIs. Hypoxia-inducible factor 1α (HIF-1α) is a hypoxia response factor that has been reported to be highly expressed in CML patients, making it a therapeutic target for BCR-ABL1 TKI-sensitive CML and BCR-ABL1 TKI-resistant CML. In this study, we examined whether HIF-1α inhibitors induce cell death in CML cells and BCR-ABL1 TKI-resistant CML cells. We found that echinomycin and PX-478 induced cell death in BCR-ABL1 TKIs sensitive and resistant CML cells at similar concentrations while the cell sensitivity was not affected with imatinib or dasatinib in BCR-ABL1 TKIs resistant CML cells. In addition, echinomycin and PX-478 inhibited the c-Jun N-terminal kinase (JNK), Akt, and extracellular-regulated protein kinase 1/2 (ERK1/2) activation via suppression of BCR-ABL1 and Met expression in BCR-ABL1 sensitive and resistant CML cells. Moreover, treatment with HIF-1α siRNA induced cell death by inhibiting BCR-ABL1 and Met expression and activation of JNK, Akt, and ERK1/2 in BCR-ABL1 TKIs sensitive and resistant CML cells. These results indicated that HIF-1α regulates BCR-ABL and Met expression and is involved in cell survival in CML cells, suggesting that HIF-1α inhibitors induce cell death in BCR-ABL1 TKIs sensitive and resistant CML cells and therefore HIF-1α inhibitors are potential candidates for CML treatment.

Molecular characterization of H3N2 influenza A virus isolated from a pig by next generation sequencing in Korea

  • Oh, Yeonsu;Moon, Sung-Hyun;Ko, Young-Seung;Na, Eun-Jee;Tark, Dong-Seob;Oem, Jae-Ku;Kim, Won-Il;Rim, Chaekwang;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Swine influenza (SI) is an important respiratory disease in pigs and epidemic worldwide, which is caused by influenza A virus (IAV) belonging to the family of Orthomyxoviridae. As seen again in the 2009 swine-origin influenza A H1N1 pandemic, pigs are known to be susceptible to swine, avian, and human IAVs, and can serve as a 'mixing vessel' for the generation of novel IAV variants. To this end, the emergence of swine influenza viruses must be kept under close surveillance. Herein, we report the isolation and phylogenetic study of a swine IAV, A/swine/Korea/21810/2021 (sw21810, H3N2 subtype). BLASTN sequence analysis of 8 gene segments of the isolated virus revealed a high degree of nucleotide similarity (94.76 to 100%) to porcine strains circulating in Korea and the United States. Out of 8 genome segments, the HA gene was closely related to that of isolates from cluster I. Additionally, the NA gene of the isolate belonged to a Korean Swine H1N1 origin, and the PB2, PB1, NP and NS genes of the isolate were grouped into that of the Triple reassortant swine H3N2 origin virus. The PA and M genes of the isolate belonged to 2009 Pandemic H1N1 lineage. Human infection with mutants was most common through contact with infected pigs. Our results suggest the need for periodic close monitoring of this novel swine H3N2 influenza virus from a public health perspective.

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

An Observational Multi-Center Study Protocol for Distribution of Pattern Identification and Clinical Index in Parkinson's Disease (파킨슨병 변증 유형 및 지표 분포에 대한 전향적 다기관 관찰연구 프로토콜)

  • HuiYan Zhao;Ojin Kwon;Bok-Nam Seo;Seong-Uk Park;Horyong Yoo;Jung-Hee Jang
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Objectives: This study investigated the pattern identification (PI) and clinical index of Parkinson's disease (PD) for personalized diagnosis and treatment. Methods: This prospective observational multi-center study recruited 100 patients diagnosed with PD from two Korean medicine hospitals. To cluster new subtypes of PD, items on a PI questionnaire (heat and cold, deficiency and excess, visceral PI) were evaluated along with pulse and tongue analysis. Gait analysis was performed and blood and feces molecular signature changes were assessed to explore biomarkers for new subtypes. In addition, unified PD rating scale II and III scores and the European quality of life 5-dimension questionnaire were assessed. Results: The clinical index obtained in this study analyzed the frequency statistics and hierarchical clustering analysis to classify new subtypes based on PI. Moreover, the biomarkers and current status of herbal medicine treatment were analyzed using the new subtypes. The results provide comprehensive data to investigate new subtypes and subtype-based biomarkers for the personalized diagnosis and treatment of PD patients. Ethical approval was obtained from the medical ethics committees of the two Korean medicine hospitals. All amendments to the research protocol were submitted and approved. Conclusions: An objective and standardized diagnostic tool is needed for the personalized treatment of PD by traditional Korean medicine. Therefore, we developed a clinical index as the basis for the PI clinical evaluation of PD. Trial Registration: This trial is registered with the Clinical Research Information Service (CRIS) (KCT0008677)

Deup1 Expression Interferes with Multiciliated Differentiation

  • Miram Shin;Jiyeon Lee;Haeryung Lee;Vijay Kumar;Jaebong Kim;Soochul Park
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.746-756
    • /
    • 2023
  • A recent study revealed that the loss of Deup1 expression does not affect either centriole amplification or multicilia formation. Therefore, the deuterosome per se is not a platform for amplification of centrioles. In this study, we examine whether gain-of-function of Deup1 affects the development of multiciliated ependymal cells. Our time-lapse study reveals that deuterosomes with an average diameter of 300 nm have two different fates during ependymal differentiation. In the first instance, deuterosomes are scattered and gradually disappear as cells become multiciliated. In the second instance, deuterosomes self-organize into a larger aggregate, called a deuterosome cluster (DC). Unlike scattered deuterosomes, DCs possess centriole components primarily within their large structure. A characteristic of DC-containing cells is that they tend to become primary ciliated rather than multiciliated. Our in utero electroporation study shows that DCs in ependymal tissue are mostly observed at early postnatal stages, but are scarce at late postnatal stages, suggesting the presence of DC antagonists within the differentiating cells. Importantly, from our bead flow assay, ectopic expression of Deup1 significantly impairs cerebrospinal fluid flow. Furthermore, we show that expression of mouse Deup1 in Xenopus embryos has an inhibitory effect on differentiation of multiciliated cells in the epidermis. Taken together, we conclude that the DC formation of Deup1 in multiciliated cells inhibits production of multiple centrioles.

Genetic Variations in Geographic Venus Clam(Gomphina aequilatera, Sowerby) Populations from Samcheok and Wonsan (삼척과 원산의 지리적 민들조개(Gomphina aequilatera, Sowerby) 집단의 유전적 변이)

  • Kim, Jong-Rae;Jung, Chang-Ho;Kim, Yong-Ho;Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.10 no.4
    • /
    • pp.227-238
    • /
    • 2006
  • Genomic DNAs(gDNAs) were isolated from the venus clam(Gomphina aequilatera) from Samcheok(venus clam from Samcheok; VCS) and Wonsan(venus clam from Wonsan; VCW) located in the East Sea of the Korean Peninsula. The amplified products were generated by agarose gel electrophoresis(AGE) with oligonucleotides primer, detected by staining with ethidium bromide and viewed by ultraviolet ray. The seven arbitrarily selected primers BION-21, BION-23, BION-25, BION-27, BION-29, BION-31 and BION-33 generated the shared loci, polymorphic, and specific loci, with the molecular sizes ranging from 150 bp to 2,400 bp. In this study, 147 polymorphic loci(147/954 loci, 15.41%) in VCS population and 274(274/996 loci, 27.51%) in VCW population were generated with seven primers. These results suggest the genetic variation in VCW population is higher than in VCS population. Especially, the 700 bp bands generated by the primer BION-21 were identified commonly in two Gomphina populations, which identified populations and/or species. This specific primer was found to be useful in the identification of individuals and/or population, resulting from the different DNA polymorphism among individuals/species/population. Two Gomphina populations between the individual SAMCHEOK no. 03 and WONSAN no. 22 showed the longest genetic distance(0.696) in comparison with other individuals used. The complete linkage cluster analysis indicating three genetic groupings and dendrogram revealed close relationships among individual identities within two geographical populations of venus clam(G. aequilatera) from the Samcheok and Wonsan. The intra-species classification and clustering analyses inferred from molecular markers supported the traditional taxonomy of the species based on morphological characters such as shell size, shape and color. Accordingly, as mentioned above, RAPD analysis showed that VCS population was more or less separated from VCW population.

  • PDF

Analysis of Potential Toxigenicity and Phylogeny using Target Genes in Aphanizomenon flos-aquae (Cyanophyceae) strains isolated from the Nakdong River (낙동강에서 분리된 Aphanizomenon flos-aquae (Cyanophyceae) 균주의 목표 유전자를 이용한 잠재적 독소 생성능 및 계통학적 분석)

  • Ryu, Hui-Seong;An, Sung-Min;Lim, Chang-Kun;Shin, Ra-Young;Park, Jong-Guen;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.137-147
    • /
    • 2017
  • The identity of toxin producers remains only hypothesis unless there were identified by strain isolation and analytical confirmation of both the cyanotoxin production and the genetic identity of the monoculture. The purposes of this study were to identify a morphologic and phylogenetic classification in Aphanizomenon flos-aquae strains isolated from the Nakdong River and to investigate the potential ability of the strains to produce toxins such as saxitoxin and cylindrospermopsin using target genes. The 16S rRNA and sxtA, sxtI, cyrA, cyrJ genes were analyzed on two strains (DGUC001, DGUC003) isolated from the Nakdong River. Morphological features of the strains were observed a shape of aggregated trichomes in parallel fascicles which can reach up to macroscopic size and a hyaline terminal cell without aerotope. In addition, the 16S rRNA phylogenetic analyses showed that the strains were identified as the same species with high genetic similarity of 98.4% and grouped within a monospecific andsupported cluster I of Aphanizomenon flos-aquae selected from GenBank of the NCBI. The cyrA and cyrJ genes encoding for the cylindrospermopsin-biosynthesis were not detected in the present study. The sxtA gene was in detected both the two strains, whereas the sxtI gene which had been suggested as a suitable molecular marker to detect saxitoxin-producing cyanobacteria was not found both the strains. Thus, the two strains isolated from Nakdong River were identified as the same species of Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault 1888, the two strains were confirmed as potential non-producing strains of the saxitoxin and cylindrospermopsin.

Genetic Variation and Polymorphism in Rainbow Trout, Oncorhynchus mykiss Analysed by Amplified Fragment Length Polymorphism

  • Yoon, Jong-Man;Yoo, Jae-Young;Park, Jae-Il
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.69-80
    • /
    • 2004
  • The objective of the present study was to analyze genetic distances, variation and characteristics of individuals in rainbow trout, Oncorhynchus mykis using amplified fragment length polymorphism (AFLP) method as molecular genetic technique, to detect AFLP band patterns as genetic markers, and to compare the efficiency of agarosegel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE), respectively. Using 9 primer combinations, a total of 141 AFLP bands were produced, 108 bands (82.4%) of which were polymorphic in AGE. In PAGE, a total of 288 bands were detected, and 220 bands (76.4%) were polymorphic. The AFLP fingerprints of AGE were different from those of PAGE. Separation of the fragments with low molecular weight and genetic polymorphisms revealed a distinct pattern in the two gel systems. In the present study, the average bandsharing values of the individuals between two populations apart from the geographic sites in Kangwon-do ranged from 0.084 to 0.738 of AGE and PAGE. The bandsharing values between individuals No.9 and No. 10 showed the highest level within population, whereas the bandsharing values between individuals No.5 and No.7 showed the lowest level. As calculated by bandsharing analysis, an average of genetic difference (mean$\pm$SD) of individuals was approximately 0.590$\pm$0.125 in this population. In AGE, the single linkage dendrogram resulted from two primers (M11+H11 and M13+H11), indicating six genetic groupings composed of group 1 (No.9 and 10), group 2 (No. 1, 4, 5, 7, 10, 11, 16 and 17), group 3 (No. 2, 3, 6, 8, 12, 15 and 16), group 4 (No.9, 14 and 17), group 5 (No. 13, 19, 20 and 21) and group 6 (No. 23). In AGE, the genetic distances among individuals of between-population ranged from 0.108 to 0.392. In AGE, the shortest genetic distance (0.108) displaying significant molecular differences was between individuals No.9 and No. 10. Especially, the genetic distance between individuals No. 23 and the remnants among individuals within population was highest (0.392). Additionally, in the cluster analysis using the PAGE data, the single linkage dendrogram resulted from two primers (M12+H13 and M11+H13), indicating seven genetic groupings composed of group 1 (No. 15), group 2 (No. 14), group 3 (No. 11 and 12), group 4 (No.5, 6, 7, 8, 10 and 13), group 5 (No.1, 2, 3 and 4), group 6 (No.9) and group 7 (No. 16). By comparison with the individuals in PAGE, genetic distance between No. 10 and No. 7 showed the shortest value (0.071), also between No. 16 and No. 14 showed the highest value (0.242). As with the PAGE analysis, genetic differences were certainly apparent with 13 of 16 individuals showing greater than 80% AFLP-based similarity to their closest neighbor. The three individuals (No. 14, No. 15 and No. 16) of rainbow trout between two populations apart from the geographic sites in Kangwon-do formed distinct genetic distances as compared with other individuals. These results indicated that AFLP markers of this fish could be used as genetic information such as species identification, genetic relationship or analysis of genome structure, and selection aids for genetic improvement of economically important traits in fish species.