DOI QR코드

DOI QR Code

Hypoxia-inducible factor 1α inhibitor induces cell death via suppression of BCR-ABL1 and Met expression in BCR-ABL1 tyrosine kinase inhibitor sensitive and resistant chronic myeloid leukemia cells

  • Masanobu Tsubaki (Division of Pharmacotherapy, Kindai University Faculty of Pharmacy) ;
  • Tomoya Takeda (Division of Pharmacotherapy, Kindai University Faculty of Pharmacy) ;
  • Takuya Matsuda (Division of Pharmacotherapy, Kindai University Faculty of Pharmacy) ;
  • Akihiro Kimura (Division of Pharmacotherapy, Kindai University Faculty of Pharmacy) ;
  • Remi Tanaka (Division of Pharmacotherapy, Kindai University Faculty of Pharmacy) ;
  • Sakiko Nagayoshi (Division of Pharmacotherapy, Kindai University Faculty of Pharmacy) ;
  • Tadafumi Hoshida (Division of Pharmacotherapy, Kindai University Faculty of Pharmacy) ;
  • Kazufumi Tanabe (Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center) ;
  • Shozo Nishida (Division of Pharmacotherapy, Kindai University Faculty of Pharmacy)
  • Received : 2022.06.11
  • Accepted : 2022.09.16
  • Published : 2023.02.28

Abstract

Chronic myeloid leukemia (CML) has a markedly improved prognosis with the use of breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitors (BCR-ABL1 TKIs). However, approximately 40% of patients are resistant or intolerant to BCR-ABL1 TKIs. Hypoxia-inducible factor 1α (HIF-1α) is a hypoxia response factor that has been reported to be highly expressed in CML patients, making it a therapeutic target for BCR-ABL1 TKI-sensitive CML and BCR-ABL1 TKI-resistant CML. In this study, we examined whether HIF-1α inhibitors induce cell death in CML cells and BCR-ABL1 TKI-resistant CML cells. We found that echinomycin and PX-478 induced cell death in BCR-ABL1 TKIs sensitive and resistant CML cells at similar concentrations while the cell sensitivity was not affected with imatinib or dasatinib in BCR-ABL1 TKIs resistant CML cells. In addition, echinomycin and PX-478 inhibited the c-Jun N-terminal kinase (JNK), Akt, and extracellular-regulated protein kinase 1/2 (ERK1/2) activation via suppression of BCR-ABL1 and Met expression in BCR-ABL1 sensitive and resistant CML cells. Moreover, treatment with HIF-1α siRNA induced cell death by inhibiting BCR-ABL1 and Met expression and activation of JNK, Akt, and ERK1/2 in BCR-ABL1 TKIs sensitive and resistant CML cells. These results indicated that HIF-1α regulates BCR-ABL and Met expression and is involved in cell survival in CML cells, suggesting that HIF-1α inhibitors induce cell death in BCR-ABL1 TKIs sensitive and resistant CML cells and therefore HIF-1α inhibitors are potential candidates for CML treatment.

Keywords

Acknowledgement

This work was supported in part by a Grant-in-Aid for Scientific Research (C) (Grant numbers 20K07145 and 20K07168) from the Japan Society for the Promotion of Science (JSPS).

References

  1. Roskoski R Jr (2022) Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myelogenous leukemia. Pharmacol Res 178, 106156
  2. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE and McCubrey JA (2004) JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189-218 https://doi.org/10.1038/sj.leu.2403241
  3. Hochhaus A, Baccarani M, Silver RT et al (2020) European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 34, 966-984 https://doi.org/10.1038/s41375-020-0776-2
  4. Garcia-Gutierrez V and Hernandez-Boluda JCC (2020) Current treatment options for chronic myeloid leukemia patients failing second-generation tyrosine kinase inhibitors. J Clin Med 9, 2251
  5. Alves R, Goncalves AC, Rutella S et al (2021) Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia-from molecular mechanisms to clinical relevance. Cancers 13, 4820
  6. Tsubaki M, Takeda T, Kino T et al (2017) Contributions of MET activation to BCR-ABL1 tyrosine kinase inhibitor resistance in chronic myeloid leukemia cells. Oncotarget 8, 38717-38730 https://doi.org/10.18632/oncotarget.16314
  7. Chen H, Shen Y, Gong F, Jiang Y and Zhang R (2015) HIF-α Promotes chronic myelogenous leukemia cell proliferation by upregulating p21 expression. Cell Biochem Biophys 72, 179-183 https://doi.org/10.1007/s12013-014-0434-2
  8. Ng KP, Manjeri A, Lee KL et al (2014) Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood 123, 3316-3326 https://doi.org/10.1182/blood-2013-07-511907
  9. Pezzuto A and Carico E (2018) Role of HIF-1 in cancer progression: novel insights. A review. Curr Mol Med 18, 343-351 https://doi.org/10.2174/1566524018666181109121849
  10. Mahdi A, Darvishi B, Majidzadeh-A K, Salehi M and Farahmand L (2019) Challenges facing antiangiogenesis therapy: the significant role of hypoxia-inducible factor and MET in development of resistance to anti-vascular endothelial growth factor-targeted therapies. J Cell Physiol 234, 5655-5663 https://doi.org/10.1002/jcp.27414
  11. Organ SL and Tsao MS (2011) An overview of the c-MET signaling pathway. Ther Adv Med Oncol 3, S7-S19 https://doi.org/10.1177/1758834011422556
  12. Li S, Qiao C, Yang L et al (2019) Fumarate hydratase deficiency induces chronic myeloid leukemia progression. Transl Cancer Res 8, 592-602 https://doi.org/10.21037/tcr.2019.03.23
  13. Zhao F, Mancuso A, Bui TV et al (2010) Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene 29, 2962-2972 https://doi.org/10.1038/onc.2010.67
  14. Lu T, Tang J, Shrestha B et al (2020) Up-regulation of hypoxia-inducible factor antisense as a novel approach to treat ovarian cancer. Theranostics 10, 6959-6976 https://doi.org/10.7150/thno.41792
  15. Dong L, You S, Zhang Q et al (2019) Arylsulfonamide 64B inhibits hypoxia/HIF-induced expression of c-Met and CXCR4 and reduces primary tumor growth and metastasis of uveal melanoma. Clin Cancer Res 25, 2206-2218 https://doi.org/10.1158/1078-0432.CCR-18-1368
  16. Boissinot M, Vilaine M and Hermouet S (2014) The hepatocyte growth factor (HGF)/Met axis: a neglected target in the treatment of chronic myeloproliferative neoplasms? Cancers 6, 1631-1669 https://doi.org/10.3390/cancers6031631
  17. Singh P, Kumar V, Gupta SK, Kumari G and Verma M (2021) Combating TKI resistance in CML by inhibiting the PI3K/Akt/mTOR pathway in combination with TKIs: a review. Med Oncol 38, 10
  18. Kawakami S, Tsuma-Kaneko M, Sawanobori M et al (2022) Pterostilbene downregulates BCR/ABL and induces apoptosis of T315I-mutated BCR/ABL-positive leukemic cells. Sci Rep 12, 704
  19. Liu Z, Zheng W, Liu Y, Zhou B, Zhang Y and Wang F (2021) Targeting HSPA8 inhibits proliferation via downregulating BCR-ABL and enhances chemosensitivity in imatinib-resistant chronic myeloid leukemia cells. Exp Cell Res 405, 112708
  20. Tsubaki M, Takeda T, Noguchi M et al (2019) Overactivation of Akt contributes to MEK inhibitor primary and acquired resistance in colorectal cancer cells. Cancers 11, 1866
  21. Tsubaki M, Takeda T, Tomonari Y et al (2018) The MIP-1α autocrine loop contributes to decreased sensitivity to anticancer drugs. J Cell Physiol 233, 4258-4271 https://doi.org/10.1002/jcp.26245
  22. Tsubaki M, Takeda T, Tomonari Y et al (2019) Overexpression of HIF-1α contributes to melphalan resistance in multiple myeloma cells by activation of ERK1/2, Akt, and NF-κB. Lab Invest 99, 72-84 https://doi.org/10.1038/s41374-018-0114-8