• Title/Summary/Keyword: Molecular Characterization

Search Result 3,089, Processing Time 0.025 seconds

Purification and Characterization of the Bacteriocin Produced by Lactococcus sp. KD 28 Isolated from Kimchi (김치에서 분리한 Lactococcus lactis가 생산하는 박테리오신의 정제 및 특성)

  • Lee, Ji-Young;Choi, Nack-Shick;Chun, Sung-Sik;Moon, Ja-Young;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.180-188
    • /
    • 2015
  • The bacterial strain isolated from Kimchi showed antibacterial activity against Micrococcus luteus IAM 1056. The selected strain was identified as Lactococcus lactis by 16S rRNA nucleotide sequence analysis and named as Lactococcus sp. KD 28. The treatment of culture supernatant with proteinase K removed antibacterial activity, indicating its proteinaceous nature, a bacteriocin. This bacteriocin was sensitive to hydrolytic enzymes such as ${\alpha}$-chymotrypsion, trypsin, proteinase K, lipase, ${\alpha}$-amylase and subtilisin A. The bacteriocin was highly thermostable and resistant to heating at $80^{\circ}C$ for up to an hour but 50 % of the total activity was remained at $100^{\circ}C$ for 30 min. The pH range from 2.0 to 8.0 had no effect on bacteriocin activity and it was not affected by solvents such as acetonitrile, isopropanol, methanol, chloroform and acetone up to 50% concentration. The bacteriocin showed antibacterial activity against M. luteus IAM 1056, Lactobacillus delbrueckii subsp. lactis KCTC 1058, Enterococcus faecium KCTC 3095, Bacillus cereus KCTC 1013, B. subtilis KCTC 1023, Listeria ivanovii subsp. ivanovii KCTC 3444, Staphylococcus aureus subsp. aureus KCTC 1916, B. megaterium KCTC 1098 and B. sphaericus KCTC 1184. The bacteriocin was purified through ammonium sulfate concentration, SP-Sepharose chromatography and RP-HPLC. The molecular weight was estimated to be about 3.4 kDa by tricine-SDS-PAGE analysis.

Characterization of TNNC1 as a Novel Tumor Suppressor of Lung Adenocarcinoma

  • Kim, Suyeon;Kim, Jaewon;Jung, Yeonjoo;Jun, Yukyung;Jung, Yeonhwa;Lee, Hee-Young;Keum, Juhee;Park, Byung Jo;Lee, Jinseon;Kim, Jhingook;Lee, Sanghyuk;Kim, Jaesang
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.619-631
    • /
    • 2020
  • In this study, we describe a novel function of TNNC1 (Troponin C1, Slow Skeletal and Cardiac Type), a component of actin-bound troponin, as a tumor suppressor of lung adenocarcinoma (LUAD). First, the expression of TNNC1 was strongly down-regulated in cancer tissues compared to matched normal lung tissues, and down-regulation of TNNC1 was shown to be strongly correlated with increased mortality among LUAD patients. Interestingly, TNNC1 expression was enhanced by suppression of KRAS, and ectopic expression of TNNC1 in turn inhibited KRASG12D-mediated anchorage independent growth of NIH3T3 cells. Consistently, activation of KRAS pathway in LUAD patients was shown to be strongly correlated with down-regulation of TNNC1. In addition, ectopic expression of TNNC1 inhibited colony formation of multiple LUAD cell lines and induced DNA damage, cell cycle arrest and ultimately apoptosis. We further examined potential correlations between expression levels of TNNC1 and various clinical parameters and found that low-level expression is significantly associated with invasiveness of the tumor. Indeed, RNA interference-mediated down-regulation of TNNC1 led to significant enhancement of invasiveness in vitro. Collectively, our data indicate that TNNC1 has a novel function as a tumor suppressor and is targeted for down-regulation by KRAS pathway during the carcinogenesis of LUAD.

Purification and Characterization of a Keratinase from Bacillus licheniformis Strain for Degradation of Egg Shell Membrane (낙각막 분해를 위한 Bacillus licheniformis로 부터 Keratinase의 정제 및 특성)

  • 전태욱;박기문
    • Food Science of Animal Resources
    • /
    • v.22 no.3
    • /
    • pp.259-266
    • /
    • 2002
  • The egg shell membrane degrading isolated from soil was identified as Bacillus licheniformis by 16S rDNA identification method. A keratinase was isolated from the Baciilu licheniformis culture. DEAE-cellulose ion-exchange and Sephadex C-75 gel chromatograhies were used to purify the enzyme. The specific activity was increased 17.3-fold by the purification procedures. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and Sephadex G-75 chromatography indicated that the purified keratinase was monomeric and had a molecular weight of 65 kDa. The enzyme showed optimum activity at pH 9.0, and was stable above pH 9.0. The optimum temperature was 50$\^{C}$ and the enzyme was stable in the temperature ranges from 20$\^{C}$ to 50t. By the addition of 1 mM and 10 mM FeSO4, the activities of the enzyme were increased to 111$\pm$4.6% and 133$\pm$3.79%, respectively. The keratinase was an alkaline serine pretense because it was inhibited only by phenylmethylsulfonylfluorice (PMSF).

Isolation and Characterization of Pepsin-soluble Collagens from Bones, Skins, and Tendons in Duck Feet

  • Kim, Hyun-Wook;Yeo, In-Jun;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Jeong, Tae-Jun;Choi, Yun-Sang;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.665-670
    • /
    • 2016
  • The objectives of this study were conducted to characterize pepsin-soluble collagen (PSC) extracted from bones (PSC-B), skins (PSC-S), and tendons (PSC-T) of duck feet and to determine their thermal and structural properties, for better practical application of each part of duck feet as a novel source for collagen. PSC was extracted from each part of duck feet by using 0.5 M acetic acid containing 5% (w/w) pepsin. Electrophoretic patterns showed that the ratio between α1 and α2 chains, which are subunit polypeptides forming collagen triple helix, was approximately 1:1 in all PSCs of duck feet. PSC-B had slightly higher molecular weights for α1 and α2 chains than PSC-S and PSC-T. From the results of differential scanning calorimetry (DSC), higher onset (beginning point of melting) and peak temperatures (maximum point of curve) were found at PSC-B compared to PSC-S and PSC-T (p<0.05). Fourier transform infrared spectroscopy (FT-IR) presented that PSC-S and PSC-T had similar intermolecular structures and chemical bonds, whereas PSC-B exhibited slight difference in amide A region. Irregular dense sheet-like films linked by random-coiled filaments were observed similarly. Our findings indicate that PSCs of duck feet might be characterized similarly as a mixture of collagen type I and II and suggest that duck feet could be used for collagen extraction without deboning and/or separation processes.

Condensable Gas Separation using Phenol! Alumina Composite Activated Carbon Hollow Fiber Membranes (페놀수지/알루미나 복합 활성탄소중공사막을 이용한 응축성 기체 분리)

  • Shin, Kyung-Yong;Park, You-In;Kim, Beom-Sik;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.312-319
    • /
    • 2010
  • Carbon membrane materials have received considerable attention for the gas separation including hydrocarbon mixture of ingredients of the volatile organic compounds(VOCs) because they possess their higher selectivity, permeability, and thermal stability than the polymeric membranes. The use of activated carbon membranes makes it possible to separate continuously the VOCs mixture by the selective adsorption-diffusion mechanism which the condensable components are preferentially adsorbed in to the micropores of the membrane. The activated carbon hollow fiber membranes with uniform adsorptive micropores on the wall of open pores and the surface of the membranes have been fabricated by the carbonization of a thin film of phenolic resin deposited on porous alumina hollow fiber membrane. Oxidation, carbonization, and activation processing variables were controlled under different conditions in order to improve the separation characteristics of the activated carbon membrane. Properties of activated carbon hollow fiber membranes and the characterization of a gas permeation by pyrolysis conditions were studied. As the result, the activated carbon hollow fiber membranes with good separation capabilities by the molecular size mechanism as well as selective adsorption on the pores surface followed by surface diffusion effective in the recovery hydrocarbons have been obtained. Therefore, these activated carbon membranes prepared in this study are shown as promising candidate membrane for separation of VOCs.

Purification and Assay of Extracellular Autolysin from Moraxella sp. CK-l (Moraxella sp. CK-1의 세포외 Autolysin의 분리 정제 및 활성도 측정)

  • 오영상;이장현;한명수;윤문영
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.148-154
    • /
    • 2003
  • Moraxella sp. CK-l is known to inhibits the growth of Anabaena cylindrica, a cyanobacterium. It has been documented that the ability of this growth inhibition of Anabaena cylindrica was attributed to extracellular autolysin from Moraxella sp. CK-l. However, it remains to be elucidated identification and characterization of autolysin have yet been elucidated. In this study, we tried to purify and identify autolysin secreted from Moraxella sp. CK-l. Cells were grown in a complex liquid medium (BGC-11) and culture supernatants were collected, followed by ammonium sulfate fractionation. Fractions were further separated with anion exchange column, Mono-Q, in FPLC system and analyzed by SDS/PAGE. The fraction containing high autolysin activity showed a single distinct protein peak in anion column and molecular mass of about 17 kDa in SDS/PAGE. Nterminal amino acid sequencing of the protein was analyzed, of which result showed the homology with some proteases, including extracellular serine protease, Dichelobacter nodosus.

Cloning, Expression, and Characterization of Endoglucanase Gene egIV from Trichoderma viride AS 3.3711

  • Huang, Xiaomei;Fan, Jinxia;Yang, Qian;Chen, Xiuling;Liu, Zhihua;Wang, Yun;Wang, Daqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.390-399
    • /
    • 2012
  • Endoglucanase gene egIV was cloned from Trichoderma viride AS 3.3711, an important cellulose-producing fungus, by using an RT-PCR protocol. The egIV cDNA is 1,297 bp in length and contains a 1,035 bp open reading frame encoding a 344 amino acid protein with an estimated molecular mass of 35.5 kDa and isoelectronic point (pI) of 5.29. The expression of gene egIV in T. viride AS 3.3711 could be induced by sucrose, corn straw, carboxymethylcellulose (CMC), or microcrystalline cellulose, but especially by CMC. The transcripts of egIV were regulated under these substrates, but the expression level of the egIV gene could be inhibited by glucose and fructose. Three recombinant vectors, pYES2-xegIV, $pYES2M{\alpha}$-egIV, and $pYES2M{\alpha}$-xegIV, were constructed to express the egIV gene in Saccharomyces cerevisiae H158. The CMCase activity of yeast transformants $IpYES2M{\alpha}$-xegIV was higher than that of transformant IpYES2-xegIV or $IpYES2M{\alpha}$-egIV, with the highest activity of 0.13 U/ml at induction for 48 h, illustrating that the modified egIV gene could enhance CMCase activity and that $MF{\alpha}$ signal peptide from S. cerevisiae could regulate exogenous gene expression more effectively in S. cerevisiae. The recombinant EGIV enzyme was stable at pH 3.5 to 7.5 and temperature of $35^{\circ}C$ to $65^{\circ}C$. The optimal reaction condition for EGIV enzyme activity was at the temperature of $55^{\circ}C$, pH of 5.0, 0.75 mM $Ba^{2+}$, and using CMC as substrate. Under these conditions, the highest activity of EGIV enzyme in transformant $IpYES2M{\alpha}$-xegIV was 0.18 U/ml. These properties would provide technical parameters for utilizing cellulose in industrial bioethanol production.

Characterization of Denitrifier Community in Independent Anoxic Reactor Using Modified BAF Process (Modified BAF 공정을 이용한 독립적인 무산소조에서 탈질미생물 군집의 특성)

  • Park, Jeung-Jin;Jeung, Young-Rok;Yu, Jae-Cheul;Hur, Sung-Ho;Choi, Won-Seok;Byun, Im-Gyu;Lee, Tae-Ho;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.752-756
    • /
    • 2006
  • The independent anoxic reactor was introduced in biological aerated filters as the regulation of water quality requirement, especially total nitrogen, had been strengthened. The process studied in this work was upflow $Biobead^{(R)}$ process which was used commercial invented for removal of organic materials and nitrification. For the purpose of evaluating the independent anoxic reactor, PCR-DGGE, of the molecular biological methods, was performed. Two types of nitrite reductase genes were selected. One is nirS represented cytocrome $cd_1$ nitrite reductase gene and the other is nirK represented Cu-containing nitrite reductase gene. Denitrifier community in the independent anoxic reactor was analyzed with PCR-DGGE using these two denitrifying functional genes. As the result of the PCR, only nirS gene was detected between nirS and nirK. With the result of the DGGE, specific bands became strong, as the operating days were longer, nitrate loading rate was increased. otherwise those of the initial activated sludge showed various bands. In the consequence of the sequence of DGGE bands, various denitrifiers were sequenced in the initial activated sludge, while specific denitrifiers like alcaligenes faecalis were predominant in the anoxic reactor. Consequently, introduction of the independent anoxic reactor made it possible to achieve 96% denitrification efficiency, and was proper for the modification of BAF process.

Purification and Characterization of an Antimicrobial Substance from Bacillus subtilis HH28 Antagonistic to Bacillus cereus (Bacillus cereus를 억제하는 Bacillus subtilis HH28의 항균물질 정제와 특성규명)

  • Cha, Hyun A;Chung, Dawn;Hong, Sung Wook;Chung, Kun Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.393-401
    • /
    • 2014
  • A bacterium producing antimicrobial substance was isolated from cheonggukjang. The bacterium was identified as a strain of Bacillus subtilis by 16S rDNA sequencing and designated as Bacillus subtilis HH28. The antimicrobial substance produced from Bacillus subtilis HH28 was purified by 0-80% ammonium sulfate precipitation, DEAE-sepharose FF column chromatography, and Sephacryl S-200 HR gel chromatography. The molecular weight of the purified antimicrobial substance was estimated to be approximately 3,500 Da using Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis and direct detection analysis. Antimicrobial substance from B. subtilis HH28 not only inhibited B. cereus, but also Listeria monocytogenes and Vibrio parahaemolyticus. The purified antimicrobial substance was stable at $40-80^{\circ}C$, and between pH 2 and 8. Antimicrobial activity of the purified substance was completely destroyed by treatment of protease, proteinase K, and pronase E, indicating that it is proteinaceous.

Isolation and Characterization of Marine Bacterial Strain SH-1 Producing Agar-Degrading Enzymes (한천 분해효소를 생산하는 해양 미생물 SH-1의 분리 및 특성 분석)

  • Lee, Jae-Hag;Lee, Soon-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.324-330
    • /
    • 2014
  • A marine bacterial strain producing agar-degrading enzymes was isolated from a mud flat in Jeboo-do (Korea) using a selective artificial sea water (ASW) agar plate containing agar as the sole carbon source. The isolate, designated as SH-1, was gram-negative, aerobic, and motile with single polar flagellum. 16S rRNA gene sequence similarity analysis showed the isolate SH-1 had the highest homology (96.5%) to marine bacterium Neiella marina J221. Cells could grow at $28-37^{\circ}C$ but not at $42^{\circ}C$, and the agarase activity of the cell culture supernatant was higher when grown at $28^{\circ}C$ than when grown at $37^{\circ}C$. Cells could grow when concentrations of 1-5% (w/v) NaCl were added to the growth media with the best growth observed at 3% NaCl, and the agardegrading enzyme activity of the cell culture supernatant was best when grown at 3% NaCl-containing growth media under the conditions we examined. The crude enzyme prepared from 48-h culture broth of strain SH-1 exhibited an optimum pH and temperature for agar-degrading activity at 7.0 and $40^{\circ}C$, respectively. Zymogram analysis of the crude supernatant and cell extract showed that strain SH-1 produced at least 3 agar-degrading enzymes with molecular weights of 15, 35, and 52 KD. Thinlayer chromatography (TLC) analysis also suggested that HS-1 produces ${\beta}$-agarase to degrade agarose to neoagarooligosaccharides.