Condensable Gas Separation using Phenol! Alumina Composite Activated Carbon Hollow Fiber Membranes

페놀수지/알루미나 복합 활성탄소중공사막을 이용한 응축성 기체 분리

  • Shin, Kyung-Yong (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, You-In (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Beom-Sik (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Koo, Kee-Kahb (Dept. of Chemical & Biomolecular Engineering, Sogang University)
  • 신경용 (한국화학연구원 환경자원연구센터) ;
  • 박유인 (한국화학연구원 환경자원연구센터) ;
  • 김범석 (한국화학연구원 환경자원연구센터) ;
  • 구기갑 (서강대학교 화공생명공학과)
  • Received : 2010.09.17
  • Accepted : 2010.12.22
  • Published : 2010.12.30

Abstract

Carbon membrane materials have received considerable attention for the gas separation including hydrocarbon mixture of ingredients of the volatile organic compounds(VOCs) because they possess their higher selectivity, permeability, and thermal stability than the polymeric membranes. The use of activated carbon membranes makes it possible to separate continuously the VOCs mixture by the selective adsorption-diffusion mechanism which the condensable components are preferentially adsorbed in to the micropores of the membrane. The activated carbon hollow fiber membranes with uniform adsorptive micropores on the wall of open pores and the surface of the membranes have been fabricated by the carbonization of a thin film of phenolic resin deposited on porous alumina hollow fiber membrane. Oxidation, carbonization, and activation processing variables were controlled under different conditions in order to improve the separation characteristics of the activated carbon membrane. Properties of activated carbon hollow fiber membranes and the characterization of a gas permeation by pyrolysis conditions were studied. As the result, the activated carbon hollow fiber membranes with good separation capabilities by the molecular size mechanism as well as selective adsorption on the pores surface followed by surface diffusion effective in the recovery hydrocarbons have been obtained. Therefore, these activated carbon membranes prepared in this study are shown as promising candidate membrane for separation of VOCs.

탄소막은 고분자막에 비해 높은 선택성과 투과성, 열적, 화학적 안정성을 가지고 있어 기체 분리, 특히 휘발성 유기화합물(VOCs) 분리막으로 많은 관심을 받고 있다. 활성탄소중공사막은 기공 표면(pore wall)에 형성된 흡착성 미세기공에 의해 선택적으로 응축성 성분이 흡착, 확산되는 흡착-확산 기구에 의해 흡착성-비흡착성 물질이 분리된다. 본 연구에서는 다공성 알루미나 중공사막 지지체에 phenolic resin (novolac type)을 코팅한 후 산화, 탄화 및 활성화 등의 열분해 과정을 통해 막 표면과 기공 표변에 흡착성 미세기공이 형성된 활성탄소중공사막을 제조하였다. 또한 열분해 조건에 따른 phenol/alumina 복합 활성탄소중공사막의 물리적 특성과 기체 투과특성에 대해 살펴보았다. 그 결과, 제조된 phenol/alumina 복합 활성탄소중공사막이 휘발성 유기물질의 대부분을 차지하고 있는 탄화수소를 선택적으로 분리 회수하는데 매우 효과적인 특성을 갖고 있음을 확인할 수 있었다. 따라서 본 연구에서 개발된 phenol/alumina 복합 활성탄소중공 사막은 VOCs의 분리, 농축에 매우 효과적으로 활용 가능할 것으로 기대된다.

Keywords

References

  1. H. Mayer, "Air pollution in cities", Atmos. Environ, 33, 4029 (1999). https://doi.org/10.1016/S1352-2310(99)00144-2
  2. 김정랑, 백세원, 임선기, "저농도 VOC 제거를 위한 여러 분자체들의 흡착/탈착특성 연구", Korean J. Odor. Res. Eng., 5, 139 (2006).
  3. F. I. Khan and A. Kr. Ghoshal, "Removal of Volatile Organic Compounds from polluted air", J. Loss Prev. Process Ind., 13, 527 (2000). https://doi.org/10.1016/S0950-4230(00)00007-3
  4. 추수태, 남창모, "산업체 VOC/악취 저감기술", J. Korean Soc. Ind. Appl., 7, 289 (2004).
  5. R. J. R. Uhlhorn, K. Keizer, and A. J. Burggraaf, "Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation", Membrane Journal, 66, 259 (1992). https://doi.org/10.1016/0376-7388(92)87016-Q
  6. P. Huang, N. Xu, J. Shi, and Y. S. Lin, "Recovery of Volatile Organic Solvent Compounds from Air by Ceramic Membranes", Ind. Eng. Chem. Res., 36, 3815 (1997). https://doi.org/10.1021/ie960760b
  7. H. H. Funke, A. M. Argo, J. L. Falconer, and R. D. Noble, "Separations of Cyclic, Branched, and Linear Hydrocarbon Mixtures through Silicalite Membranes", Ind. Eng. Chem. Res., 36, 137 (1997). https://doi.org/10.1021/ie960472f
  8. 강하성, 박유인, 김범식, 서정권, 신경용, 서동학, "기체분리용 활성탄소중공사막 제조", Theor. Appl. Chem. Eng., 14, 412 (2008).
  9. T. A. Centeno, J. L. Vilas, and A. B. Fuertes, "Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation", Membrane Journal, 228, 45 (2004). https://doi.org/10.1016/j.memsci.2003.09.010
  10. J. E. Koresh and A. Soffe, "Mechanism of permeation through molecular seive carbon membrane", Chem. Soc. Faraday Trans. I, 82, 2057 (1986). https://doi.org/10.1039/f19868202057