• Title/Summary/Keyword: Molecular Characteristics

Search Result 2,994, Processing Time 0.032 seconds

Particle-Mixing Simulations Using DEM and Comparison of the Performance of Mixing Indices (DEM을 이용한 입자 혼합 시뮬레이션과 혼합지수들의 성능 비교)

  • Cho, Migyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.145-152
    • /
    • 2017
  • Mixing of molecular grains having different characteristics is very important in many industries such as the food and pharmaceutical industries. With the development of computer simulations, it is common practice to find the optimal mixing conditions through a simulation before the actual mixing task to estimate the proper level of mixing. Accordingly, there has been an increasing need for a mixing index to measure the mix of particles in the simulation process. Mixing indices, which have been widely used so far, can largely be classified into two types: first is the statistical-based mixing index, which is prepared using the sampling method, and the second is the mixing index that is prepared using all the particles. In this paper, we calculated mixing indices in different ways for the data in the course of mixing the particles using the DEM simulation. Additionally, we compared the performance, advantages, and disadvantages of each mixing index. Therefore, I propose a standard that can be used to select an appropriate mixing index.

Preparation of Glycidylmethacrylate-Divinylbenzene Copolymers Containing Phosphoric Acid Groups and Their Adsorption Characteristics of Uranium(II) - Adsorption Equilibrium and Kinetics of Uranium on RGP Resins - (인산기를 함유한 Glycidylmethacrylate-Divinylbenzene 공중합체의 제조와 우라늄 흡착특성(제2보) - RGP수지에 대한 우라늄의 흡착평형과 흡착속도 -)

  • Huh, Kwang Sun;Park, Sang Wook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.689-697
    • /
    • 1998
  • In this work, we studied the equilibrium, rate and rate determining step of uranium adsorption on RGP resins of MR type prepared by varying the degree of crosslinking and the amount of diluent. The equilibrium of uranium adsorption on RGP resins were well explained by Frendrich isotherm as well as Langmuir isotherm model. The amount of adsorption and adsorption rate increase with the adsorption temperature. The heat of the adsorption was 11 kcal/mol. The adsorption rates of uranium on RGP resins were decreased in the order of RGP-10(50)>RGP-1(50)>RGP-2(50)>RGP-5(50)>RGP-0(50) and RGP-2(75)>RGP-2(100)>RGP-2(50)>RGP-2(30)>RGP-2(0). The diffusion resistance of uranium into RGP resin increased as follows; molecular diffusion < pore diffusion < surface diffusion. On the other hand, the surface diffusion was more dominative than the pore diffusion in intraparticle region. Thus, this result indicates that the adsorption mechanism of uranium on RGP resins is intraparticle diffusion controlled.

  • PDF

Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(2) - Ozonation or ACF Adsorption Treatment of Reactive Dyes - (수용액 중의 염료 제거를 위한 폐수처리공정의 특성(2) - 반응성염료의 오존산화 및 섬유상활성탄 흡착 처리 -)

  • Han, Myung-Ho;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.19 no.3
    • /
    • pp.26-36
    • /
    • 2007
  • This study was carried out to treat the aqueous solutions containing reactive dyes(RB19, RR120 and RY179) by the Ozone demand flask method and adsorption process using activated carbon fiber(ACF) which are one of the main pollutants in dye wastewater. Ozone oxidation of three kinds of the reactive dyes was examined to investigate the reactivity of dyes with ozone, competition reaction and ozone utilization on various conditions for single- and multi-solute dye solution. Concentration of dyes was decreased continuously with increasing ozone dosage in the single-solute dye solutions. Competition quotient values were calculated to investigate the preferential oxidation of individual dyes in multi-solute dye solutions. Competition quotients(CQi) and values of the overall utilization efficiency, ${\eta}O_3$, were increased at 40mg/l of ozone dosage in multi-solute dye solutions. ACF(A-15) has much larger specific surface area$(1,584m^2/g-ACF)$ in comparison with granular activated carbon adsorbent (F400, $1,125m^2/g-GAC$), which is commonly used, and most of pores were found to be micropores with pore radius of 2nm and below. It was found that RB19 was most easily adsorbed among the dyes in this study. In the case of PCP (p-chlorophenol) and sucrose, which are single component adsorbate, adsorption capacities of ACF(A-15) were in good agreement with the batch adsorption measurement, and saturation time predicted of ACF columns for these components was also well agreed with practically measured time. But in the case of reactive dyes, which have relatively high molecular weight and aggregated with multi-components, adsorption capacities or saturation time predicted were not agreed with practically measured values.

Physicochemical and Microbiological Characterization of Protected Designation of Origin Ezine Cheese: Assessment of Non-starter Lactic Acid Bacterial Diversity with Antimicrobial Activity

  • Uymaz, Basar;Akcelik, Nefise;Yuksel, Zerrin
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.804-819
    • /
    • 2019
  • Ezine cheese is a non-starter and long-ripened cheese produced in the Mount of Ida region of Canakkale, Turkey, with a protected designation of origin status. Non-starter lactic acid bacteria (NSLAB) have a substantial effect on the quality and final sensorial characteristics of long-ripened cheeses. The dominance of NSLAB can be attributed to their high tolerance to the hostile environment in cheese during ripening relative to many other microbial groups and to its ability to inhibit undesired microorganisms. These qualities promote the microbiological stability of long-ripened cheeses. In this study, 144 samples were collected from three dairies during the ripening period of Ezine cheese. Physicochemical composition and NSLAB identification analyses were performed using both conventional and molecular methods. According to the results of a 16S rRNA gene sequence analysis, 13 different species belonging to seven genera were identified. Enterococcus faecium (38.42%) and E. faecalis (18.94%) were dominant species during the cheese manufacturing process, surviving 12 months of ripening together with Lactobacillus paracasei (13.68%) and Lb. plantarum (11.05%). The results indicate that NSLAB contributes to the microbiological stability of Ezine cheese over 12 months of ripening. The isolation of NSLAB with antimicrobial activity, potential bacteriocin producers, yielded defined collections of natural NSLAB isolates from Ezine cheese that can be used to generate specific starter cultures for the production of Ezine cheese (PDO).

Conservation Biology of Endangered Plant Species in the National Parks of Korea with Special Reference to Iris dichotoma Pall. (Iridaceae)

  • So, Soonku;Myeong, Hyeon-Ho;Kim, Tae Geun;Oh, Jang-Geun;Kim, Ji-young;Choi, Dae-hoon;Yun, Ju-Ung;Kim, Byung-Bu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.32-32
    • /
    • 2019
  • The aim of this study was to provide basic guidelines for conservation and management of endangered plants in the national parks of Korea. Iris dichotoma Pall. (Iridaceae), which is a popular garden plant, is considered a second-class endangered species by Korean government and it is listed as a EN (Endangered) species in Red Data Book of Korea. We analyzed ecological conditions of I. dichotoma habitats based on vegetation properties and soil characteristics. This species which is known to inhabit in grassland adjacent to the ocean of lowlands slope and its population was located at an elevation of 8 m to 11 m. In the study sites, the mean of soil organic matter, total nitrogen and soil pH were 6.16%, 0.234% and 5.39 respectively. Additionally, the genetic variation and structure of three populations were assessed using ISSR (Inter Simple Sequence Repeat) markers. The genetic diversity of I. dichotoma (P = 59.46%, H = 0.206, S = 0.310) at the species level was relatively high. Analysis of molecular variance (AMOVA) showed 82.1% of the total genetic diversity was occurred in within populations and 17.9% variation among populations. Lastly, we developed predicted distribution model based on climate and topographic factors by applying SDMs (Species Distribution Models). Consequently, current status of I. dichotoma habitats is limited with natural factors such as the increase of the coverage rate of the herbs due to ecological succession. Therefore, it is essential to establish in situ and ex situ conservation strategies for protecting natural habitats and to require exploring potential and alternative habitats for reintroduction.

  • PDF

A Study on the Fischer-Tropsch Synthesis for Production of Hydrocarbon from Syngas under Gas Phase and Supercritical Phase (가스 및 초임계반응하에서 합성가스로부터 탄화수소 제조를 위한 피서트롭스 반응에 관한 연구)

  • Kim, Chul-Ung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Chae, Ho-Jeong;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Kim, Jung-Hyun;Han, Jeong-Sik;Jeong, Byung-Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.15-21
    • /
    • 2011
  • With petroleum reserves dwindling, interest has been increasing worldwide in Fischer-Tropsch synthesis (FT) as a method of producing synthetic liquid fuels and chemicals from coal, natural gas or biomass. In general, FT synthesis is operated through the gas phase fixed-bed reaction system. Recently, there are lots of study in supercritical fluid due to unique characteristics such as the quick diffusion of reactant gas, effective removal of reaction heat, and the in-situ extraction of high molecular weight hydrocarbon, such as wax. In this study, our major aim is to obtain a deeper insight into the effect of the type of support on the reaction performance over a supported cobalt catalyst in a fixed bed reactor.

A study of changes on the physical properties of silk fibroin biological membrane according to the dissolving conditions (실크피브로인 용해조건에 따른 생체막의 물성 변화)

  • Jo, You-Young;Kweon, HaeYong;Lee, Kwang-Gill;Lee, Heui-Sam
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.71-75
    • /
    • 2012
  • Silk is a natural polymer that has the advantages of the biocompatibility, excellent mechanical strength, low immune rejection, and molding facility. But silk does not dissolve easily in water or general solvent. To investigate the characteristics of silk biological membranes according to dissolving condition of silk fibroin, we made the silk biological membranes using silk fibroin solutions with different amount and dissolving time of silk. The characterizations of the silk biological membranes such as morphology, structure, and mechanical strength were observed. Although each biological membrane has the same fibroin content, there was a significant difference in the thickness and transparency. But there was no significant change in the molecular weight of the silk fibroin solutions and morphology of silk biological membranes. We were established the manufacturing condition for silk fibroin biological membrane. So we expect that the conditions will help in the development of medical supplies in the future.

3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells

  • An, Ju-Hyun;Song, Woo-Jin;Li, Qiang;Bhang, Dong-Ha;Youn, Hwa-Young
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.25.1-25.16
    • /
    • 2021
  • Background: Malignant lymphoma is the most common hematopoietic malignancy in dogs, and relapse is frequently seen despite aggressive initial treatment. In order for the treatment of these recurrent lymphomas in dogs to be effective, it is important to choose a personalized and sensitive anticancer agent. To provide a reliable tool for drug development and for personalized cancer therapy, it is critical to maintain key characteristics of the original tumor. Objectives: In this study, we established a model of hybrid tumor/stromal spheroids and investigated the association between canine lymphoma cell line (GL-1) and canine lymph node (LN)-derived stromal cells (SCs). Methods: A hybrid spheroid model consisting of GL-1 cells and LN-derived SC was created using ultra low attachment plate. The relationship between SCs and tumor cells (TCs) was investigated using a coculture system. Results: TCs cocultured with SCs were found to have significantly upregulated multidrug resistance genes, such as P-qp, MRP1, and BCRP, compared with TC monocultures. Additionally, it was revealed that coculture with SCs reduced doxorubicin-induced apoptosis and G2/M cell cycle arrest of GL-1 cells. Conclusions: SCs upregulated multidrug resistance genes in TCs and influenced apoptosis and the cell cycle of TCs in the presence of anticancer drugs. This study revealed that understanding the interaction between the tumor microenvironment and TCs is essential in designing experimental approaches to personalized medicine and to predict the effect of drugs.

Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques

  • Chaudhary, Narendra;Im, Jae-Kyeong;Nho, Si-Hyeong;Kim, Hajin
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.627-636
    • /
    • 2021
  • The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.

NiOx-based hole injection layer for organic light-emitting diodes (유기발광소자에 적용 가능한 NiOx 기반의 정공주입층 연구)

  • Kim, Junmo;Gim, Yejin;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.309-313
    • /
    • 2021
  • Organic semiconductors have received tremendous attention for their research because of their tunable electrical and optical properties that can be achieved by changing their molecular structure. However, organic materials are inherently unstable in the presence of oxygen and moisture. Therefore, it is necessary to develop moisture and air stable semiconducting materials that can replace conventional organic semiconductors. In this study, we developed a NiOx thin film through a solution process. The electrical characteristics of the NiOx thin film, depending on the thermal annealing temperature and UV-ozone treatment, were determined by applying them to the hole injection layer of an organic light-emitting diode. A high annealing temperature of 500 ℃ and UV-ozone treatment enhanced the conductivity of the NiOx thin films. The optimized NiOx exhibited beneficial hole injection properties comparable those of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN), a conventional organic hole injection layer. As a result, both devices exhibited similar power efficiencies and the comparable electroluminescent spectra. We believe that NiOx could be a potential solution which can provide robustness to conventional organic semiconductors.