Acknowledgement
This work was funded by the National Research Foundation in the Republic of Korea (2020M3C9A5086357, 2021R1A2C1013943).
References
- Agarwal, P. and Miller, K.M. (2017). Chapter 11 - chromatin dynamics and DNA repair. In Chromatin Regulation and Dynamics, A. Gondor, ed. (Boston: Academic Press), pp. 275-302.
- Anton, T., Bultmann, S., Leonhardt, H., and Markaki, Y. (2014). Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR / Cas system. Nucleus 5, 163-172. https://doi.org/10.4161/nucl.28488
- Barutcu, A.R., Lajoie, B.R., McCord, R.P., Tye, C.E., Hong, D., Messier, T.L., Browne, G., van Wijnen, A.J., Lian, J.B., Stein, J.L., et al. (2015). Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol. 16, 214. https://doi.org/10.1186/s13059-015-0768-0
- Beliveau, B.J., Joyce, E.F., Apostolopoulos, N., Yilmaz, F., Fonseka, C.Y., McCole, R.B., Chang, Y., Li, J.B., Senaratne, T.N., Williams, B.R., et al. (2012). Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl. Acad. Sci. U. S. A. 109, 21301-21306. https://doi.org/10.1073/pnas.1213818110
- Bickmore, W.A. (2013). The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14, 67-84. https://doi.org/10.1146/annurev-genom-091212-153515
- Bintu, B., Mateo, L.J., Su, J.H., Sinnott-Armstrong, N.A., Parker, M., Kinrot, S., Yamaya, K., Boettiger, A.N., and Zhuang, X. (2018). Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783. https://doi.org/10.1126/science.aau1783
- Bronshtein, I., Kepten, E., Kanter, I., Berezin, S., Lindner, M., Redwood, A.B., Mai, S., Gonzalo, S., Foisner, R., Shav-Tal, Y., et al. (2015). Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat. Commun. 6, 8044. https://doi.org/10.1038/ncomms9044
- Bronstein, I., Israel, Y., Kepten, E., Mai, S., Shav-Tal, Y., Barkai, E., and Garini, Y. (2009). Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 103, 018102. https://doi.org/10.1103/PhysRevLett.103.018102
- Chambeyron, S. and Bickmore, W.A. (2004). Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119-1130. https://doi.org/10.1101/gad.292104
- Chaudhary, N., Nho, S.H., Cho, H., Gantumur, N., Ra, J.S., Myung, K., and Kim, H. (2020). Background-suppressed live visualization of genomic loci with an improved CRISPR system based on a split fluorophore. Genome Res. 30, 1306-1316. https://doi.org/10.1101/gr.260018.119
- Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.W., Park, J., Blackburn, E.H., Weissman, J.S., Qi, L.S., et al. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491. https://doi.org/10.1016/j.cell.2013.12.001
- Chen, B., Hu, J., Almeida, R., Liu, H., Balakrishnan, S., Covill-Cooke, C., Lim, W.A., and Huang, B. (2016). Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res. 44, e75. https://doi.org/10.1093/nar/gkv1533
- Cho, N.W., Dilley, R.L., Lampson, M.A., and Greenberg, R.A. (2014). Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159, 108-121. https://doi.org/10.1016/j.cell.2014.08.030
- Chuang, C.H., Carpenter, A.E., Fuchsova, B., Johnson, T., de Lanerolle, P., and Belmont, A.S. (2006). Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825-831.
- Chubb, J.R., Boyle, S., Perry, P., and Bickmore, W.A. (2002). Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439-445. https://doi.org/10.1016/S0960-9822(02)00695-4
- Clowney, E.J., LeGros, M.A., Mosley, C.P., Clowney, F.G., Markenskoff-Papadimitriou, E.C., Myllys, M., Barnea, G., Larabell, C.A., and Lomvardas, S. (2012). Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151, 724-737. https://doi.org/10.1016/j.cell.2012.09.043
- Cremer, T. and Cremer, C. (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292-301. https://doi.org/10.1038/35066075
- Criscione, S.W., De Cecco, M., Siranosian, B., Zhang, Y., Kreiling, J.A., Sedivy, J.M., and Neretti, N. (2016). Reorganization of chromosome architecture in replicative cellular senescence. Sci. Adv. 2, e1500882. https://doi.org/10.1126/sciadv.1500882
- Croft, J.A., Bridger, J.M., Boyle, S., Perry, P., Teague, P., and Bickmore, W.A. (1999). Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119-1131. https://doi.org/10.1083/jcb.145.6.1119
- Dekker, J. and Mirny, L. (2016). The 3D genome as moderator of chromosomal communication. Cell 164, 1110-1121. https://doi.org/10.1016/j.cell.2016.02.007
- Deng, W., Shi, X., Tjian, R., Lionnet, T., and Singer, R.H. (2015). CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. U. S. A. 112, 11870-11875. https://doi.org/10.1073/pnas.1515692112
- Dixon, J.R., Gorkin, D.U., and Ren, B. (2016). Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668-680. https://doi.org/10.1016/j.molcel.2016.05.018
- Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380. https://doi.org/10.1038/nature11082
- Doench, J.G., Hartenian, E., Graham, D.B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B.L., Xavier, R.J., and Root, D.E. (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262-1267. https://doi.org/10.1038/nbt.3026
- Farabella, I. and Marti-Renom, M.A. (2020). TADs without borders. Nat. Genet. 52, 752-753. https://doi.org/10.1038/s41588-020-0670-x
- Flyamer, I.M., Gassler, J., Imakaev, M., Brandao, H.B., Ulianov, S.V., Abdennur, N., Razin, S.V., Mirny, L.A., and Tachibana-Konwalski, K. (2017). Single-nucleus Hi-C reveals unique chromatin reorganization at oocyteto-zygote transition. Nature 544, 110-114. https://doi.org/10.1038/nature21711
- Fraser, J., Williamson, I., Bickmore, W.A., and Dostie, J. (2015). An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol. Mol. Biol. Rev. 79, 347-372. https://doi.org/10.1128/MMBR.00006-15
- Fu, Y., Rocha, P.P., Luo, V.M., Raviram, R., Deng, Y., Mazzoni, E.O., and Skok, J.A. (2016). CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat. Commun. 7, 11707. https://doi.org/10.1038/ncomms11707
- Geng, Y. and Pertsinidis, A. (2021). Simple and versatile imaging of genomic loci in live mammalian cells and early pre-implantation embryos using CAS-LiveFISH. Sci. Rep. 11, 12220. https://doi.org/10.1038/s41598-021-91787-y
- George, J.T., Azhar, M., Aich, M., Sinha, D., Ambi, U.B., Maiti, S., Chakraborty, D., and Srivatsan, S.G. (2020). Terminal uridylyl transferase mediated site-directed access to clickable chromatin employing CRISPR-dCas9. J. Am. Chem. Soc. 142, 13954-13965. https://doi.org/10.1021/jacs.0c06541
- Gibcus, J.H. and Dekker, J. (2013). The hierarchy of the 3D genome. Mol. Cell 49, 773-782. https://doi.org/10.1016/j.molcel.2013.02.011
- Gilbert, D.M., Takebayashi, S.I., Ryba, T., Lu, J., Pope, B.D., Wilson, K.A., and Hiratani, I. (2010). Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harb. Symp. Quant. Biol. 75, 143-153. https://doi.org/10.1101/sqb.2010.75.011
- Gu, B., Swigut, T., Spencley, A., Bauer, M.R., Chung, M., Meyer, T., and Wysocka, J. (2018). Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359, 1050-1055. https://doi.org/10.1126/science.aao3136
- Hao, Y., Li, J., Li, Q., Zhang, L., Shi, J., Zhang, X., Aldalbahi, A., Wang, L., Fan, C., and Wang, F. (2020). Programmable live-cell CRISPR imaging with toehold-switch-mediated strand displacement. Angew. Chem. Int. Ed. Engl. 59, 20612-20618. https://doi.org/10.1002/anie.202009062
- Hong, Y., Lu, G., Duan, J., Liu, W., and Zhang, Y. (2018). Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging. Genome Biol. 19, 39. https://doi.org/10.1186/s13059-018-1413-5
- Isaac, R.S., Jiang, F., Doudna, J.A., Lim, W.A., Narlikar, G.J., and Almeida, R. (2016). Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife 5, e13450. https://doi.org/10.7554/eLife.13450
- Ishii, T., Schubert, V., Khosravi, S., Dreissig, S., Metje-Sprink, J., Sprink, T., Fuchs, J., Meister, A., and Houben, A. (2019). RNA-guided endonuclease - in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. New Phytol. 222, 1652-1661. https://doi.org/10.1111/nph.15720
- Khanna, N., Hu, Y., and Belmont, A.S. (2014). HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24, 1138-1144. https://doi.org/10.1016/j.cub.2014.03.053
- Kim, K., Eom, J., and Jung, I. (2019). Characterization of structural variations in the context of 3D chromatin structure. Mol. Cells 42, 512-522. https://doi.org/10.14348/molcells.2019.0137
- Kohwi, M., Lupton, J.R., Lai, S.L., Miller, M.R., and Doe, C.Q. (2013). Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152, 97-108. https://doi.org/10.1016/j.cell.2012.11.049
- Kupper, K., Kolbl, A., Biener, D., Dittrich, S., von Hase, J., Thormeyer, T., Fiegler, H., Carter, N.P., Speicher, M.R., Cremer, T., et al. (2007). Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116, 285-306. https://doi.org/10.1007/s00412-007-0098-4
- Kurz, A., Lampel, S., Nickolenko, J.E., Bradl, J., Benner, A., Zirbel, R.M., Cremer, T., and Lichter, P. (1996). Active and inactive genes localize preferentially in the periphery of chromosome territories. J. Cell Biol. 135, 1195-1205. https://doi.org/10.1083/jcb.135.5.1195
- Kuscu, C., Arslan, S., Singh, R., Thorpe, J., and Adli, M. (2014). Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677-683. https://doi.org/10.1038/nbt.2916
- Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A., and Singer, R.H. (2011). Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332, 475-478. https://doi.org/10.1126/science.1202142
- Lee, S., Kim, J., and Park, J.E. (2021). Single-cell toolkits opening a new era for cell engineering. Mol. Cells 44, 127-135. https://doi.org/10.14348/molcells.2021.0002
- Levi, V., Ruan, Q., Plutz, M., Belmont, A.S., and Gratton, E. (2005). Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys. J. 89, 4275-4285. https://doi.org/10.1529/biophysj.105.066670
- Lichter, P., Cremer, T., Borden, J., Manuelidis, L., and Ward, D.C. (1988). Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224-234. https://doi.org/10.1007/BF01790090
- Lieberman-aiden, E., Berkum, N.L.V., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293. https://doi.org/10.1126/science.1181369
- Ma, H., Naseri, A., Reyes-Gutierrez, P., Wolfe, S.A., Zhang, S., and Pederson, T. (2015). Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. U. S. A. 112, 3002-3007. https://doi.org/10.1073/pnas.1420024112
- Ma, H., Tu, L.C., Chung, Y.C., Naseri, A., Grunwald, D., Zhang, S., and Pederson, T. (2019). Cell cycle- and genomic distance-dependent dynamics of a discrete chromosomal region. J. Cell Biol. 218, 1467-1477. https://doi.org/10.1083/jcb.201807162
- Ma, H., Tu, L.C., Naseri, A., Chung, Y.C., Grunwald, D., Zhang, S., and Pederson, T. (2018). CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat. Methods 15, 928-931. https://doi.org/10.1038/s41592-018-0174-0
- Ma, H., Tu, L.C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., and Pederson, T. (2016). Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528-530. https://doi.org/10.1038/nbt.3526
- Maass, P.G., Barutcu, A.R., Shechner, D.M., Weiner, C.L., Mele, M., and Rinn, J.L. (2018). Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nat. Struct. Mol. Biol. 25, 176-184. https://doi.org/10.1038/s41594-017-0015-3
- Mahy, N.L., Perry, P.E., Gilchrist, S., Baldock, R.A., and Bickmore, W.A. (2002). Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J. Cell Biol. 157, 579-589. https://doi.org/10.1083/jcb.200111071
- Marshall, W.F., Straight, A., Marko, J.F., Swedlow, J., Dernburg, A., Belmont, A., Murray, A.W., Agard, D.A., and Sedat, J.W. (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930-939. https://doi.org/10.1016/S0960-9822(06)00412-X
- Michaelis, C., Ciosk, R., and Nasmyth, K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35-45. https://doi.org/10.1016/S0092-8674(01)80007-6
- Misteli, T. (2007). Beyond the sequence: cellular organization of genome function. Cell 128, 787-800. https://doi.org/10.1016/j.cell.2007.01.028
- Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E.D., Tanay, A., and Fraser, P. (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59-64. https://doi.org/10.1038/nature12593
- Nora, E.P., Goloborodko, A., Valton, A.L., Gibcus, J.H., Uebersohn, A., Abdennur, N., Dekker, J., Mirny, L.A., and Bruneau, B.G. (2017). Targeted degradation of CTCF decouples local insulation of chromosome romains from genomic compartmentalization. Cell 169, 930-944.e22. https://doi.org/10.1016/j.cell.2017.05.004
- Osborne, C.S., Chakalova, L., Mitchell, J.A., Horton, A., Wood, A.L., Bolland, D.J., Corcoran, A.E., and Fraser, P. (2007). Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5, e192. https://doi.org/10.1371/journal.pbio.0050192
- Pope, B.D., Ryba, T., Dileep, V., Yue, F., Wu, W., Denas, O., Vera, D.L., Wang, Y., Hansen, R.S., Canfield, T.K., et al. (2014). Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402-405. https://doi.org/10.1038/nature13986
- Qin, P., Parlak, M., Kuscu, C., Bandaria, J., Mir, M., Szlachta, K., Singh, R., Darzacq, X., Yildiz, A., and Adli, M. (2017). Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat. Commun. 8, 14725. https://doi.org/10.1038/ncomms14725
- Ramani, V., Deng, X., Qiu, R., Gunderson, K.L., Steemers, F.J., Disteche, C.M., Noble, W.S., Duan, Z., and Shendure, J. (2017). Massively multiplex single-cell Hi-C. Nat. Methods 14, 263-266. https://doi.org/10.1038/nmeth.4155
- Rao, S.S.P., Huang, S.C., Glenn St Hilaire, B., Engreitz, J.M., Perez, E.M., Kieffer-Kwon, K.R., Sanborn, A.L., Johnstone, S.E., Bascom, G.D., Bochkov, I.D., et al. (2017). Cohesin loss eliminates all loop domains. Cell 171, 305-320.e24. https://doi.org/10.1016/j.cell.2017.09.026
- Robinett, C.C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A., and Belmont, A.S. (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135(6 Pt 2), 1685-1700. https://doi.org/10.1083/jcb.135.6.1685
- Roukos, V., Voss, T.C., Schmidt, C.K., Lee, S., Wangsa, D., and Misteli, T. (2013). Spatial dynamics of chromosome translocations in living cells. Science 341, 660-664. https://doi.org/10.1126/science.1237150
- Rowley, M.J. and Corces, V.G. (2018). Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789-800. https://doi.org/10.1038/s41576-018-0060-8
- Seeber, A., Hauer, M.H., and Gasser, S.M. (2018). Chromosome dynamics in response to DNA damage. Annu. Rev. Genet. 52, 295-319. https://doi.org/10.1146/annurev-genet-120417-031334
- Sexton, T. and Cavalli, G. (2015). The role of chromosome domains in shaping the functional genome. Cell 160, 1049-1059. https://doi.org/10.1016/j.cell.2015.02.040
- Shaban, H.A., Barth, R., and Bystricky, K. (2018). Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription. Nucleic Acids Res. 46, e77. https://doi.org/10.1093/nar/gky269
- Shaban, H.A. and Seeber, A. (2020). Monitoring global chromatin dynamics in response to DNA damage. Mutat. Res. 821, 111707. https://doi.org/10.1016/j.mrfmmm.2020.111707
- Shao, S., Zhang, W., Hu, H., Xue, B., Qin, J., Sun, C., Sun, Y., Wei, W., and Sun, Y. (2016). Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res. 44, e86. https://doi.org/10.1093/nar/gkw066
- Shechner, D.M., Hacisuleyman, E., Younger, S.T., and Rinn, J.L. (2015). Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12, 664-670. https://doi.org/10.1038/nmeth.3433
- Shinkai, S., Nozaki, T., Maeshima, K., and Togashi, Y. (2016). Dynamic nucleosome movement provides structural information of topological chromatin domains in living human cells. PLoS Comput. Biol. 12, e1005136. https://doi.org/10.1371/journal.pcbi.1005136
- Stevens, T.J., Lando, D., Basu, S., Atkinson, L.P., Cao, Y., Lee, S.F., Leeb, M., Wohlfahrt, K.J., Boucher, W., O'Shaughnessy-Kirwan, A., et al. (2017). 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59-64. https://doi.org/10.1038/nature21429
- Taberlay, P.C., Achinger-Kawecka, J., Lun, A.T.L., Buske, F.A., Sabir, K., Gould, C.M., Zotenko, E., Bert, S.A., Giles, K.A., Bauer, D.C., et al. (2016). Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 26, 719-731. https://doi.org/10.1101/gr.201517.115
- Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., and Vale, R.D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646. https://doi.org/10.1016/j.cell.2014.09.039
- Volpi, E.V., Chevret, E., Jones, T., Vatcheva, R., Williamson, J., Beck, S., Campbell, R.D., Goldsworthy, M., Powis, S.H., Ragoussis, J., et al. (2000). Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J. Cell Sci. 113, 1565-1576. https://doi.org/10.1242/jcs.113.9.1565
- Wang, S., Hao, Y., Zhang, L., Wang, F., Li, J., Wang, L., and Fan, C. (2019). Multiplexed superresolution CRISPR imaging of chromatin in living cells. CCS Chem. 1, 278-285.
- Wang, S., Su, J.H., Zhang, F., and Zhuang, X. (2016). An RNA-aptamer-based two-color CRISPR labeling system. Sci. Rep. 6, 26857. https://doi.org/10.1038/srep26857
- Wang, T., Wei, J.J., Sabatini, D.M., and Lander, E.S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84. https://doi.org/10.1126/science.1246981
- Williams, R.R.E., Broad, S., Sheer, D., and Ragoussis, J. (2002). Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp. Cell Res. 272, 163-175. https://doi.org/10.1006/excr.2001.5400
- Wu, B., Chao, J.A., and Singer, R.H. (2012). Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys. J. 102, 2936-2944. https://doi.org/10.1016/j.bpj.2012.05.017
- Ye, H., Rong, Z., and Lin, Y. (2017). Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8, 853-855. https://doi.org/10.1007/s13238-017-0460-0
- You, Q., Cheng, A.Y., Gu, X., Harada, B.T., Yu, M., Wu, T., Ren, B., Ouyang, Z., and He, C. (2021). Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin organization at high resolution. Nat. Biotechnol. 39, 225-235. https://doi.org/10.1038/s41587-020-0643-8
- Zhang, X.H., Tee, L.Y., Wang, X.G., Huang, Q.S., and Yang, S.H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4, e264. https://doi.org/10.1038/mtna.2015.37
- Zuin, J., Dixon, J.R., van der Reijden, M.I.J.A., Ye, Z., Kolovos, P., Brouwer, R.W.W., van de Corput, M.P.C., van de Werken, H.J.G., Knoch, T.A., van Ijcken, W.F.J., et al. (2014). Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl. Acad. Sci. U. S. A. 111, 996-1001. https://doi.org/10.1073/pnas.1317788111