DOI QR코드

DOI QR Code

Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques

  • Chaudhary, Narendra (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology) ;
  • Im, Jae-Kyeong (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology) ;
  • Nho, Si-Hyeong (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Hajin (Department of Biomedical Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2020.12.27
  • Accepted : 2021.08.26
  • Published : 2021.09.30

Abstract

The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.

Keywords

Acknowledgement

This work was funded by the National Research Foundation in the Republic of Korea (2020M3C9A5086357, 2021R1A2C1013943).

References

  1. Agarwal, P. and Miller, K.M. (2017). Chapter 11 - chromatin dynamics and DNA repair. In Chromatin Regulation and Dynamics, A. Gondor, ed. (Boston: Academic Press), pp. 275-302.
  2. Anton, T., Bultmann, S., Leonhardt, H., and Markaki, Y. (2014). Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR / Cas system. Nucleus 5, 163-172. https://doi.org/10.4161/nucl.28488
  3. Barutcu, A.R., Lajoie, B.R., McCord, R.P., Tye, C.E., Hong, D., Messier, T.L., Browne, G., van Wijnen, A.J., Lian, J.B., Stein, J.L., et al. (2015). Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol. 16, 214. https://doi.org/10.1186/s13059-015-0768-0
  4. Beliveau, B.J., Joyce, E.F., Apostolopoulos, N., Yilmaz, F., Fonseka, C.Y., McCole, R.B., Chang, Y., Li, J.B., Senaratne, T.N., Williams, B.R., et al. (2012). Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl. Acad. Sci. U. S. A. 109, 21301-21306. https://doi.org/10.1073/pnas.1213818110
  5. Bickmore, W.A. (2013). The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14, 67-84. https://doi.org/10.1146/annurev-genom-091212-153515
  6. Bintu, B., Mateo, L.J., Su, J.H., Sinnott-Armstrong, N.A., Parker, M., Kinrot, S., Yamaya, K., Boettiger, A.N., and Zhuang, X. (2018). Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783. https://doi.org/10.1126/science.aau1783
  7. Bronshtein, I., Kepten, E., Kanter, I., Berezin, S., Lindner, M., Redwood, A.B., Mai, S., Gonzalo, S., Foisner, R., Shav-Tal, Y., et al. (2015). Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat. Commun. 6, 8044. https://doi.org/10.1038/ncomms9044
  8. Bronstein, I., Israel, Y., Kepten, E., Mai, S., Shav-Tal, Y., Barkai, E., and Garini, Y. (2009). Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 103, 018102. https://doi.org/10.1103/PhysRevLett.103.018102
  9. Chambeyron, S. and Bickmore, W.A. (2004). Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119-1130. https://doi.org/10.1101/gad.292104
  10. Chaudhary, N., Nho, S.H., Cho, H., Gantumur, N., Ra, J.S., Myung, K., and Kim, H. (2020). Background-suppressed live visualization of genomic loci with an improved CRISPR system based on a split fluorophore. Genome Res. 30, 1306-1316. https://doi.org/10.1101/gr.260018.119
  11. Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.W., Park, J., Blackburn, E.H., Weissman, J.S., Qi, L.S., et al. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491. https://doi.org/10.1016/j.cell.2013.12.001
  12. Chen, B., Hu, J., Almeida, R., Liu, H., Balakrishnan, S., Covill-Cooke, C., Lim, W.A., and Huang, B. (2016). Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res. 44, e75. https://doi.org/10.1093/nar/gkv1533
  13. Cho, N.W., Dilley, R.L., Lampson, M.A., and Greenberg, R.A. (2014). Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159, 108-121. https://doi.org/10.1016/j.cell.2014.08.030
  14. Chuang, C.H., Carpenter, A.E., Fuchsova, B., Johnson, T., de Lanerolle, P., and Belmont, A.S. (2006). Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825-831.
  15. Chubb, J.R., Boyle, S., Perry, P., and Bickmore, W.A. (2002). Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439-445. https://doi.org/10.1016/S0960-9822(02)00695-4
  16. Clowney, E.J., LeGros, M.A., Mosley, C.P., Clowney, F.G., Markenskoff-Papadimitriou, E.C., Myllys, M., Barnea, G., Larabell, C.A., and Lomvardas, S. (2012). Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151, 724-737. https://doi.org/10.1016/j.cell.2012.09.043
  17. Cremer, T. and Cremer, C. (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292-301. https://doi.org/10.1038/35066075
  18. Criscione, S.W., De Cecco, M., Siranosian, B., Zhang, Y., Kreiling, J.A., Sedivy, J.M., and Neretti, N. (2016). Reorganization of chromosome architecture in replicative cellular senescence. Sci. Adv. 2, e1500882. https://doi.org/10.1126/sciadv.1500882
  19. Croft, J.A., Bridger, J.M., Boyle, S., Perry, P., Teague, P., and Bickmore, W.A. (1999). Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119-1131. https://doi.org/10.1083/jcb.145.6.1119
  20. Dekker, J. and Mirny, L. (2016). The 3D genome as moderator of chromosomal communication. Cell 164, 1110-1121. https://doi.org/10.1016/j.cell.2016.02.007
  21. Deng, W., Shi, X., Tjian, R., Lionnet, T., and Singer, R.H. (2015). CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl. Acad. Sci. U. S. A. 112, 11870-11875. https://doi.org/10.1073/pnas.1515692112
  22. Dixon, J.R., Gorkin, D.U., and Ren, B. (2016). Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668-680. https://doi.org/10.1016/j.molcel.2016.05.018
  23. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380. https://doi.org/10.1038/nature11082
  24. Doench, J.G., Hartenian, E., Graham, D.B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B.L., Xavier, R.J., and Root, D.E. (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262-1267. https://doi.org/10.1038/nbt.3026
  25. Farabella, I. and Marti-Renom, M.A. (2020). TADs without borders. Nat. Genet. 52, 752-753. https://doi.org/10.1038/s41588-020-0670-x
  26. Flyamer, I.M., Gassler, J., Imakaev, M., Brandao, H.B., Ulianov, S.V., Abdennur, N., Razin, S.V., Mirny, L.A., and Tachibana-Konwalski, K. (2017). Single-nucleus Hi-C reveals unique chromatin reorganization at oocyteto-zygote transition. Nature 544, 110-114. https://doi.org/10.1038/nature21711
  27. Fraser, J., Williamson, I., Bickmore, W.A., and Dostie, J. (2015). An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol. Mol. Biol. Rev. 79, 347-372. https://doi.org/10.1128/MMBR.00006-15
  28. Fu, Y., Rocha, P.P., Luo, V.M., Raviram, R., Deng, Y., Mazzoni, E.O., and Skok, J.A. (2016). CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat. Commun. 7, 11707. https://doi.org/10.1038/ncomms11707
  29. Geng, Y. and Pertsinidis, A. (2021). Simple and versatile imaging of genomic loci in live mammalian cells and early pre-implantation embryos using CAS-LiveFISH. Sci. Rep. 11, 12220. https://doi.org/10.1038/s41598-021-91787-y
  30. George, J.T., Azhar, M., Aich, M., Sinha, D., Ambi, U.B., Maiti, S., Chakraborty, D., and Srivatsan, S.G. (2020). Terminal uridylyl transferase mediated site-directed access to clickable chromatin employing CRISPR-dCas9. J. Am. Chem. Soc. 142, 13954-13965. https://doi.org/10.1021/jacs.0c06541
  31. Gibcus, J.H. and Dekker, J. (2013). The hierarchy of the 3D genome. Mol. Cell 49, 773-782. https://doi.org/10.1016/j.molcel.2013.02.011
  32. Gilbert, D.M., Takebayashi, S.I., Ryba, T., Lu, J., Pope, B.D., Wilson, K.A., and Hiratani, I. (2010). Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harb. Symp. Quant. Biol. 75, 143-153. https://doi.org/10.1101/sqb.2010.75.011
  33. Gu, B., Swigut, T., Spencley, A., Bauer, M.R., Chung, M., Meyer, T., and Wysocka, J. (2018). Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359, 1050-1055. https://doi.org/10.1126/science.aao3136
  34. Hao, Y., Li, J., Li, Q., Zhang, L., Shi, J., Zhang, X., Aldalbahi, A., Wang, L., Fan, C., and Wang, F. (2020). Programmable live-cell CRISPR imaging with toehold-switch-mediated strand displacement. Angew. Chem. Int. Ed. Engl. 59, 20612-20618. https://doi.org/10.1002/anie.202009062
  35. Hong, Y., Lu, G., Duan, J., Liu, W., and Zhang, Y. (2018). Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging. Genome Biol. 19, 39. https://doi.org/10.1186/s13059-018-1413-5
  36. Isaac, R.S., Jiang, F., Doudna, J.A., Lim, W.A., Narlikar, G.J., and Almeida, R. (2016). Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife 5, e13450. https://doi.org/10.7554/eLife.13450
  37. Ishii, T., Schubert, V., Khosravi, S., Dreissig, S., Metje-Sprink, J., Sprink, T., Fuchs, J., Meister, A., and Houben, A. (2019). RNA-guided endonuclease - in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. New Phytol. 222, 1652-1661. https://doi.org/10.1111/nph.15720
  38. Khanna, N., Hu, Y., and Belmont, A.S. (2014). HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24, 1138-1144. https://doi.org/10.1016/j.cub.2014.03.053
  39. Kim, K., Eom, J., and Jung, I. (2019). Characterization of structural variations in the context of 3D chromatin structure. Mol. Cells 42, 512-522. https://doi.org/10.14348/molcells.2019.0137
  40. Kohwi, M., Lupton, J.R., Lai, S.L., Miller, M.R., and Doe, C.Q. (2013). Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152, 97-108. https://doi.org/10.1016/j.cell.2012.11.049
  41. Kupper, K., Kolbl, A., Biener, D., Dittrich, S., von Hase, J., Thormeyer, T., Fiegler, H., Carter, N.P., Speicher, M.R., Cremer, T., et al. (2007). Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116, 285-306. https://doi.org/10.1007/s00412-007-0098-4
  42. Kurz, A., Lampel, S., Nickolenko, J.E., Bradl, J., Benner, A., Zirbel, R.M., Cremer, T., and Lichter, P. (1996). Active and inactive genes localize preferentially in the periphery of chromosome territories. J. Cell Biol. 135, 1195-1205. https://doi.org/10.1083/jcb.135.5.1195
  43. Kuscu, C., Arslan, S., Singh, R., Thorpe, J., and Adli, M. (2014). Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677-683. https://doi.org/10.1038/nbt.2916
  44. Larson, D.R., Zenklusen, D., Wu, B., Chao, J.A., and Singer, R.H. (2011). Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332, 475-478. https://doi.org/10.1126/science.1202142
  45. Lee, S., Kim, J., and Park, J.E. (2021). Single-cell toolkits opening a new era for cell engineering. Mol. Cells 44, 127-135. https://doi.org/10.14348/molcells.2021.0002
  46. Levi, V., Ruan, Q., Plutz, M., Belmont, A.S., and Gratton, E. (2005). Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys. J. 89, 4275-4285. https://doi.org/10.1529/biophysj.105.066670
  47. Lichter, P., Cremer, T., Borden, J., Manuelidis, L., and Ward, D.C. (1988). Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224-234. https://doi.org/10.1007/BF01790090
  48. Lieberman-aiden, E., Berkum, N.L.V., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293. https://doi.org/10.1126/science.1181369
  49. Ma, H., Naseri, A., Reyes-Gutierrez, P., Wolfe, S.A., Zhang, S., and Pederson, T. (2015). Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl. Acad. Sci. U. S. A. 112, 3002-3007. https://doi.org/10.1073/pnas.1420024112
  50. Ma, H., Tu, L.C., Chung, Y.C., Naseri, A., Grunwald, D., Zhang, S., and Pederson, T. (2019). Cell cycle- and genomic distance-dependent dynamics of a discrete chromosomal region. J. Cell Biol. 218, 1467-1477. https://doi.org/10.1083/jcb.201807162
  51. Ma, H., Tu, L.C., Naseri, A., Chung, Y.C., Grunwald, D., Zhang, S., and Pederson, T. (2018). CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat. Methods 15, 928-931. https://doi.org/10.1038/s41592-018-0174-0
  52. Ma, H., Tu, L.C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., and Pederson, T. (2016). Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528-530. https://doi.org/10.1038/nbt.3526
  53. Maass, P.G., Barutcu, A.R., Shechner, D.M., Weiner, C.L., Mele, M., and Rinn, J.L. (2018). Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nat. Struct. Mol. Biol. 25, 176-184. https://doi.org/10.1038/s41594-017-0015-3
  54. Mahy, N.L., Perry, P.E., Gilchrist, S., Baldock, R.A., and Bickmore, W.A. (2002). Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J. Cell Biol. 157, 579-589. https://doi.org/10.1083/jcb.200111071
  55. Marshall, W.F., Straight, A., Marko, J.F., Swedlow, J., Dernburg, A., Belmont, A., Murray, A.W., Agard, D.A., and Sedat, J.W. (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930-939. https://doi.org/10.1016/S0960-9822(06)00412-X
  56. Michaelis, C., Ciosk, R., and Nasmyth, K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35-45. https://doi.org/10.1016/S0092-8674(01)80007-6
  57. Misteli, T. (2007). Beyond the sequence: cellular organization of genome function. Cell 128, 787-800. https://doi.org/10.1016/j.cell.2007.01.028
  58. Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E.D., Tanay, A., and Fraser, P. (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59-64. https://doi.org/10.1038/nature12593
  59. Nora, E.P., Goloborodko, A., Valton, A.L., Gibcus, J.H., Uebersohn, A., Abdennur, N., Dekker, J., Mirny, L.A., and Bruneau, B.G. (2017). Targeted degradation of CTCF decouples local insulation of chromosome romains from genomic compartmentalization. Cell 169, 930-944.e22. https://doi.org/10.1016/j.cell.2017.05.004
  60. Osborne, C.S., Chakalova, L., Mitchell, J.A., Horton, A., Wood, A.L., Bolland, D.J., Corcoran, A.E., and Fraser, P. (2007). Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5, e192. https://doi.org/10.1371/journal.pbio.0050192
  61. Pope, B.D., Ryba, T., Dileep, V., Yue, F., Wu, W., Denas, O., Vera, D.L., Wang, Y., Hansen, R.S., Canfield, T.K., et al. (2014). Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402-405. https://doi.org/10.1038/nature13986
  62. Qin, P., Parlak, M., Kuscu, C., Bandaria, J., Mir, M., Szlachta, K., Singh, R., Darzacq, X., Yildiz, A., and Adli, M. (2017). Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat. Commun. 8, 14725. https://doi.org/10.1038/ncomms14725
  63. Ramani, V., Deng, X., Qiu, R., Gunderson, K.L., Steemers, F.J., Disteche, C.M., Noble, W.S., Duan, Z., and Shendure, J. (2017). Massively multiplex single-cell Hi-C. Nat. Methods 14, 263-266. https://doi.org/10.1038/nmeth.4155
  64. Rao, S.S.P., Huang, S.C., Glenn St Hilaire, B., Engreitz, J.M., Perez, E.M., Kieffer-Kwon, K.R., Sanborn, A.L., Johnstone, S.E., Bascom, G.D., Bochkov, I.D., et al. (2017). Cohesin loss eliminates all loop domains. Cell 171, 305-320.e24. https://doi.org/10.1016/j.cell.2017.09.026
  65. Robinett, C.C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A., and Belmont, A.S. (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135(6 Pt 2), 1685-1700. https://doi.org/10.1083/jcb.135.6.1685
  66. Roukos, V., Voss, T.C., Schmidt, C.K., Lee, S., Wangsa, D., and Misteli, T. (2013). Spatial dynamics of chromosome translocations in living cells. Science 341, 660-664. https://doi.org/10.1126/science.1237150
  67. Rowley, M.J. and Corces, V.G. (2018). Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789-800. https://doi.org/10.1038/s41576-018-0060-8
  68. Seeber, A., Hauer, M.H., and Gasser, S.M. (2018). Chromosome dynamics in response to DNA damage. Annu. Rev. Genet. 52, 295-319. https://doi.org/10.1146/annurev-genet-120417-031334
  69. Sexton, T. and Cavalli, G. (2015). The role of chromosome domains in shaping the functional genome. Cell 160, 1049-1059. https://doi.org/10.1016/j.cell.2015.02.040
  70. Shaban, H.A., Barth, R., and Bystricky, K. (2018). Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription. Nucleic Acids Res. 46, e77. https://doi.org/10.1093/nar/gky269
  71. Shaban, H.A. and Seeber, A. (2020). Monitoring global chromatin dynamics in response to DNA damage. Mutat. Res. 821, 111707. https://doi.org/10.1016/j.mrfmmm.2020.111707
  72. Shao, S., Zhang, W., Hu, H., Xue, B., Qin, J., Sun, C., Sun, Y., Wei, W., and Sun, Y. (2016). Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res. 44, e86. https://doi.org/10.1093/nar/gkw066
  73. Shechner, D.M., Hacisuleyman, E., Younger, S.T., and Rinn, J.L. (2015). Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12, 664-670. https://doi.org/10.1038/nmeth.3433
  74. Shinkai, S., Nozaki, T., Maeshima, K., and Togashi, Y. (2016). Dynamic nucleosome movement provides structural information of topological chromatin domains in living human cells. PLoS Comput. Biol. 12, e1005136. https://doi.org/10.1371/journal.pcbi.1005136
  75. Stevens, T.J., Lando, D., Basu, S., Atkinson, L.P., Cao, Y., Lee, S.F., Leeb, M., Wohlfahrt, K.J., Boucher, W., O'Shaughnessy-Kirwan, A., et al. (2017). 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59-64. https://doi.org/10.1038/nature21429
  76. Taberlay, P.C., Achinger-Kawecka, J., Lun, A.T.L., Buske, F.A., Sabir, K., Gould, C.M., Zotenko, E., Bert, S.A., Giles, K.A., Bauer, D.C., et al. (2016). Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 26, 719-731. https://doi.org/10.1101/gr.201517.115
  77. Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., and Vale, R.D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646. https://doi.org/10.1016/j.cell.2014.09.039
  78. Volpi, E.V., Chevret, E., Jones, T., Vatcheva, R., Williamson, J., Beck, S., Campbell, R.D., Goldsworthy, M., Powis, S.H., Ragoussis, J., et al. (2000). Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J. Cell Sci. 113, 1565-1576. https://doi.org/10.1242/jcs.113.9.1565
  79. Wang, S., Hao, Y., Zhang, L., Wang, F., Li, J., Wang, L., and Fan, C. (2019). Multiplexed superresolution CRISPR imaging of chromatin in living cells. CCS Chem. 1, 278-285.
  80. Wang, S., Su, J.H., Zhang, F., and Zhuang, X. (2016). An RNA-aptamer-based two-color CRISPR labeling system. Sci. Rep. 6, 26857. https://doi.org/10.1038/srep26857
  81. Wang, T., Wei, J.J., Sabatini, D.M., and Lander, E.S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84. https://doi.org/10.1126/science.1246981
  82. Williams, R.R.E., Broad, S., Sheer, D., and Ragoussis, J. (2002). Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp. Cell Res. 272, 163-175. https://doi.org/10.1006/excr.2001.5400
  83. Wu, B., Chao, J.A., and Singer, R.H. (2012). Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys. J. 102, 2936-2944. https://doi.org/10.1016/j.bpj.2012.05.017
  84. Ye, H., Rong, Z., and Lin, Y. (2017). Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8, 853-855. https://doi.org/10.1007/s13238-017-0460-0
  85. You, Q., Cheng, A.Y., Gu, X., Harada, B.T., Yu, M., Wu, T., Ren, B., Ouyang, Z., and He, C. (2021). Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin organization at high resolution. Nat. Biotechnol. 39, 225-235. https://doi.org/10.1038/s41587-020-0643-8
  86. Zhang, X.H., Tee, L.Y., Wang, X.G., Huang, Q.S., and Yang, S.H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4, e264. https://doi.org/10.1038/mtna.2015.37
  87. Zuin, J., Dixon, J.R., van der Reijden, M.I.J.A., Ye, Z., Kolovos, P., Brouwer, R.W.W., van de Corput, M.P.C., van de Werken, H.J.G., Knoch, T.A., van Ijcken, W.F.J., et al. (2014). Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl. Acad. Sci. U. S. A. 111, 996-1001. https://doi.org/10.1073/pnas.1317788111