DOI QR코드

DOI QR Code

A study of changes on the physical properties of silk fibroin biological membrane according to the dissolving conditions

실크피브로인 용해조건에 따른 생체막의 물성 변화

  • Jo, You-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Heui-Sam (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 조유영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 권해용 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 이광길 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 이희삼 (농촌진흥청 국립농업과학원 잠사양봉소재과)
  • Received : 2012.09.10
  • Accepted : 2012.10.08
  • Published : 2012.12.30

Abstract

Silk is a natural polymer that has the advantages of the biocompatibility, excellent mechanical strength, low immune rejection, and molding facility. But silk does not dissolve easily in water or general solvent. To investigate the characteristics of silk biological membranes according to dissolving condition of silk fibroin, we made the silk biological membranes using silk fibroin solutions with different amount and dissolving time of silk. The characterizations of the silk biological membranes such as morphology, structure, and mechanical strength were observed. Although each biological membrane has the same fibroin content, there was a significant difference in the thickness and transparency. But there was no significant change in the molecular weight of the silk fibroin solutions and morphology of silk biological membranes. We were established the manufacturing condition for silk fibroin biological membrane. So we expect that the conditions will help in the development of medical supplies in the future.

실크는 생체적합성이 우수하며, 기계적 강도가 좋고, 낮은 면역 거부반응과 다양한 형태로의 성형이 가능한 장점을 갖는 천연고분자이다. 그러나 실크는 물이나 일반적인 용매에 쉽게 용해되지 않는다. 본 연구에서는 실크 피브로인의 용해조건에 따른 실크 생체막의 특성 변화를 관찰하기위하여, 실크 함유량과 실크 용해시간을 달리하여 실크 피브로인 수용액을 만들고 이를 이용하여 실크 생체막을 제작하였다. 제작된 실크 생체막의 형태, 구조, 기계적강도 등과 같은 특징을 관찰 하였다. 비록 각 실크 생체막에 함유된 피브로인의 함량이 같을 지라도 생체막의 두께와 투명도에는 커다란 차이를 보였다. 하지만 실크 피브로인 용액의 분자량과 생체막의 형태에 있어서의 변화는 거의 없었다. 본 연구는 실크 피브로인의 용해조건에 따라 실크 생체막의 유연성, 강도, 투명도 등의 다양한 특성을 조절할 수 있다는 것을 보여주었으며, 최적의 실크생체막 제작 조건을 확립하였으므로, 향후 실크를 이용한 의료용품 개발에 많은 도움이 될 것으로 생각된다.

Keywords

References

  1. Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE (2012) A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater. 11, 123-131. https://doi.org/10.1016/j.jmbbm.2011.11.007
  2. John GH, Lin MR, Thomas RS (2008) polymeric materials based on silk proteins. Polymer 49, 4309-4327. https://doi.org/10.1016/j.polymer.2008.08.006
  3. Kim J, Kim CH, Park CH, Seo JN, Kweon HY, Kang SW, Lee KG (2010) Comparison of methods for the repair of acute tympanic membrane perforations: Silk patch vs. pater patch. Wound Repair and Regeneration 18, 132-138. https://doi.org/10.1111/j.1524-475X.2009.00565.x
  4. Kim UJ, Park J, Kim HJ, Wada M, and Kaplan DL (2005) Threedemensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26, 2775-2785. https://doi.org/10.1016/j.biomaterials.2004.07.044
  5. Lv Q, Cao C, Zhang Y, Man X, Zhu H (2004) The preparation of insoluble fibroin films induced by degummed fibroin or fibroin microspheres. J Mater Sci Mater Med 15, 1193-1197. https://doi.org/10.1007/s10856-004-5918-y
  6. Masahiro K, Naohide T, Yasuhiro S, Koji Y, Yasushi T, Naoyoshi K, Toru S (2011) Chondrocyte distribution and cartilage regeneration in silk fibroin sponge. Bio-Medical Materials and Engineering 21, 53-61.
  7. Putthanarat S, Eby RK, Adams WW, Liu GF (1996) Aspects of the morphology of the silk of Bombyx mori. J Macromol Sci Pure Appl Chem. A33, 899-911.
  8. Satoshi I, Kazunori T, Fumio A, Sumiko K, Kohei O, Shigeke M (2000) Silk fibroin of bombyx mori is secreated, assembling a high molecular mass elementary unit consisting of H-chain, Lchain, and P25, with a 6:6:1 molar ratio. Journal of biological chemistry 275, 40517-40528. https://doi.org/10.1074/jbc.M006897200
  9. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54, 139-148. https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
  10. Sugihara A, Sugiura K, Morita H, Ninagawa T, Tubouchi K, Tobe R, Izumiya M, Horio T, Abraham NG, Ikehara S (2000) Promotive effects of a silk film on epidermal recovery from fullthickness skin wounds. Proc Soc Exp Biol Med. 225, 58-64. https://doi.org/10.1046/j.1525-1373.2000.22507.x