• Title/Summary/Keyword: Mold parts

Search Result 639, Processing Time 0.029 seconds

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

Effect of LED Irradiation on Growth Characteristids of Ginseng Cultivated in Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Yoon, Du Hyeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.45-45
    • /
    • 2019
  • This experiment was carried out using artificial clay and LED in the plastic film house (irradiation time: 08:00~18:00/day). Seedlings (n = 63 per $3.3m^2$) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity. The average air temperature from April to September was $12.3^{\circ}C$ $-26.0^{\circ}C$ and it was the the highest at $26.0^{\circ}C$ in August. The test area where fluorescent lamp was irradiated tended to be somewhat higher than the LED irradiation area. The chemical properties of the test soil are as follows. pH levels was 5.3~5.5, EC levels 0.45~0.52 dS/m and OM levels 33~37%. The total nitrogen content was 0.35~0.47% and the available $P_2O_5$ contents was 13.7~16.0 mg/kg, which was lower than the suitable level of 70~200 mg/kg. Exchangeable cations K and Mg contents were within acceptable ranges, but the Ca contents was $28{\sim}38cmol^+/kg$ levels higher than the permissible level ($2{\sim}6cmol^+/kg$). Germination of ginseng leaves took 8~9 days and the overall germination rate was 70~75%. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PAR (Photosynthetic Action Radiation) value, illuminance and solar irradiation. Photosynthetic rate was also increased with higher light intensity was investigated at $1.7{\sim}3.2{\mu}mol\;CO_2/m^2/s$. Leaf temperature ($23.7{\sim}24.8^{\circ}C$) by light intensity was the same trend. The growth of aerial parts (plant height etc.) were generally excellent when irradiated with 3 times the light intensity, the growth of the ginseng aerial parts were excellent as follows. The plant height was 42.6 cm, stem length was 25.2 cm, leaf length was 9.6 cm and stem diameter was 5.0 mm. The growth of underground part (root length etc.) was the same, and the root length was 24.4 cm, the tap root length was 6.0 cm, diameter of taproot was 18.2 mm and the fresh root weight was 17.2 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping off occurred 2.2~3.6% and incidence ratio of rusty root ginseng was 14.6~20.7%. Leaf discoloration rate was 13.7~48.9% and increased with increasing light intensity. Ginsenoside content of ginseng by light intensity is under analysis.

  • PDF

Approval status and characteristics of work-related musculoskeletal disorders among Korean workers in 2020

  • Eun-woo Cha;Sae-mi Jung;Il-ho Lee;Dae Hwan Kim;Eui Hyek Choi;In-ah Kim;Yong-kyu Kim;Kyung-joon Lee;Yang Won Kang;Ho-gil Kim;Young-ki Kim
    • Annals of Occupational and Environmental Medicine
    • /
    • v.34
    • /
    • pp.31.1-31.14
    • /
    • 2022
  • Background: This study aimed to investigate the characteristics of work-related musculoskeletal disorders (WRMSDs) in occupational disease claims and identify patterns of WRMSDs for each body part by industry and occupation. Methods: This study analyzed the raw data of occupational disease claims for musculoskeletal disorders deliberated by the Occupational Disease Decision Committee of the Korea Workers' Compensation & Welfare Service in 2020. The data was classified into 6 body parts with the highest numbers of occupational disease cases by using the complete enumeration data on principal diagnoses and 4 types of subdiagnoses in the raw data. The characteristics and approval rates of WRMSDs by body part, industry and occupation were examined and summarized. Results: A total of 13,015 occupational disease cases for WRMSDs were classified, and lumbar spinal (back) diseases accounted for the largest proportion of claimed diseases, followed by shoulder, elbow, wrist, knee, and neck diseases in a descending order. The occupations with the highest and second highest numbers of occupational disease cases by body part were found to be automobile assemblers and production-related elementary workers for the neck, school meal service workers and cooks for the back, construction frame mold carpenters and school meal service workers for the shoulder, elementary workers in mining and food service workers for the elbow, food service workers and automobile parts assemblers for the wrist, and ship welders and school meal service workers for the knee. Conclusions: This study examined the characteristics and approval status of WRMSDs by body part and occupation. Based on the study results, management strategies for the prevention of WRMSDs should be established regarding occupations with a high risk of WRMSDs for each body part.

EFFECT OF ULTRASONIC VIBRATION ON ENAMEL AND DENTIN BOND STRENGTH AND RESIN INFILTRATION IN ALL-IN-ONE ADHESIVE SYSTEMS (All-in-one 접착제에서 초음파진동이 법랑질과 상아질의 결합강도와 레진침투에 미치는 영향)

  • Lee, Bum-Eui;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.1
    • /
    • pp.66-78
    • /
    • 2004
  • The objective of this study was to apply the vibration technique to reduce the viscosity of bonding adhesives and thereby compare the bond strength and resin penetration in enamel and dentin achieved with those gained using the conventional technique and vibration technique. For enamel specimens, thirty teeth were sectioned mesio-distally. Sectioned two parts were assigned to same adhesive system but different treatment(vibration vs. non-vibration). Each specimen was embedded in 1-inch inner diameter PVC pipe with a acrylic resin. The buccal and lingual surfaces were placed so that the tooth and the embedding medium were at the same level. The samples were subsequently polished silicon carbide abrasive papers. Each adhesive system was applied according to its manufacture's instruction. Vibration groups were additionally vibrated for 15 seconds before curing. For dentin specimen, except removing the coronal part and placing occlusal surface at the mold level, the remaining procedures were same as enamel specimen. Resin composite(Z250. 3M. U.S.A.) was condensed on to the prepared surface in two increments using a mold kit(Ultradent Inc., U.S.A.). Each increments was light cured for 40 seconds. After 24 hours in tap water at room temperature, the specimens were thermocycled for 1000cycles. Shear bond strengths were measured with a universal testing machine(Instron 4465, England). To investigate infiltration patterns of adhesive materials, the surface of specimens was examined with scanning electron microscope. The results were as follows: 1. In enamel the mean values of shear bond strengths in vibration groups(group 2, 4, 6) were greater than those of non-vibration group(group 1, 3, 5). The differences were statistically significant except AQ bond group. 2. In dentin, the mean values of shear bond strengths in vibration groups(group 2, 4, 6) were greater than those of non-vibration groups(group 1, 3, 5). But the differences were not statistically significant except One-Up Bond F group. 3. The vibration group showed more mineral loss in enamel and longer resin tag and greater number of lateral branches in dentin under SEM examination.

  • PDF

Effects of Overwintering Disease Prevention in Korean Ginseng(Panax ginseng C.A. Meyer) by an Agronomical Control Measure in Paddy Field (논 재배 인삼의 월동병해 발생경감을 위한 경종적 처리효과)

  • Seong, Bong-Jae;Kim, Sun-Ick;Lee, Ka-Soon;Kim, Hyun-Ho;Kang, Yun Kyu;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.152-158
    • /
    • 2019
  • This study was conducted to develop and prove the effects of an agronomical pest control measure on ginseng cultivated by direct seeding in paddy field, and the results obtained are as follows. Decomposition of ginseng in field during overwintering was due to gray mold rot caused by Botrytis cinerea, which occurred in October or November of 2016 and intensified in February and March the following year. The occurrence rate of gray mold rot based on shading materials was 6.5%, 16.8%, and 29.5% with light-proof paper, PE shade net, and rice straw shade, respectively. The initial infection occurred in the leaves prior to wintering and secondary infection occurred in the stems after wintering. The rate of screrotium formation by gray mold in the above-ground parts of ginseng tended to increase: 26.6% on October 20, 33.7% in November 20, and 41.8% on December 20. The force needed to remove the leaves and stems from withered ginseng was 0.2, 0.94, 2.5, and 5 kg for 1-, 2-, 3-, and 4- and 5-year holds; the force required was 1 kg after wintering, making it relatively easy to remove. The disease incidence rate after the removal of leaves and stems was 2.5%, 1.2%, and 2.2% in 4-, 5-, and 6-year-old plants, respectively, and a disease high incidence rate of 8.8%, 13.0%, and 18.2%, respectively, was seen when the leaves and stems were not removed. In both transplanting and direct seeding, the miss-planted rate decreased and the germination rate increased when shading material was removed and the surface of ridge was covered with soil or vinyl.

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

Analysis on Relation between Rehabilitation Training Movement and Muscle Activation using Weighted Association Rule Discovery (가중연관규칙 탐사를 이용한 재활훈련운동과 근육 활성의 연관성 분석)

  • Lee, Ah-Reum;Piao, Youn-Jun;Kwon, Tae-Kyu;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.7-17
    • /
    • 2009
  • The precise analysis of exercise data for designing an effective rehabilitation system is very important as a feedback for planing the next exercising step. Many subjective and reliable research outcomes that were obtained by analysis and evaluation for the human motor ability by various methods of biomechanical experiments have been introduced. Most of them include quantitative analysis based on basic statistical methods, which are not practical enough for application to real clinical problems. In this situation, data mining technology can be a promising approach for clinical decision support system by discovering meaningful hidden rules and patterns from large volume of data obtained from the problem domain. In this research, in order to find relational rules between posture training type and muscle activation pattern, we investigated an application of the WAR(Weishted Association Rule) to the biomechanical data obtained mainly for evaluation of postural control ability. The discovered rules can be used as a quantitative prior knowledge for expert's decision making for rehabilitation plan. The discovered rules can be used as a more qualitative and useful priori knowledge for the rehabilitation and clinical expert's decision-making, and as a index for planning an optimal rehabilitation exercise model for a patient.

A Study on the Compression Moldability for Continuous Fiber-Reinforced Polymeric Composites -Part II : Effect of Correlation Coefficient on Compression Moldability- (연속섬유강화 플라스틱 복합재료의 압축성형성에 관한 연구 -제II보 : 압축성형성에 미치는 상관계수의 영향-)

  • 오영준;김이곤
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • During the compression molding process of the continuous fiber-reinforced polymeric composites, two main problems such as fiber-matrix separation and fiber orientation are produced by the difference of flow velocity. Molded parts are lead to be nonhomogeneous and anisotropic. As the mechanical property of the products are dependent on the separation and orientation, it is important to research the fiber mat structure and molding condition. If the fiber mat structure is changed by the increment of needling, the separation decreases and after compression molding the orientation is easily aligned. As it were, the compression moldability is good. But the defects as tears, thin thickness are produced in the products. Therefore, it is important to clarify the moldability in relation to the usage of products and the expenses of produce on the actual process. Therefore we must make the measurement methods that can define the moldability of products. In this research, the effects of the fiber mat structure(NP = 0, 5, 10, 25, 50 punches/$cm^2$) and the mold geometry($r_p$ = 1, 25, 50 mm) on the moldability of products were discussed. We investigated the case of one-dimensional flow in order to obtain the degree of nonhomogeneity and the fiber orientation function. In result, we could gain the correlation coefficient of the continuous fiber-reinforced polymeric composites. Also we experimented on the cup-type compression molding which was appeared the wrinkle on the flange part by the complex stress condition in order to gain the degree of nonhomogeneity and area ratio. In result, the moldability of products was expressed as the correlation coefficient and area ratio.

  • PDF

Development of Healthcare Bathing System for Improving the Multisensory Functions (복합감각 기능증진 개념의 헬스케어 목욕시스템 개발)

  • Kim, Hyung-Ji;Yu, Mi;Jin, Hea-Ryen;Kwon, Tae-Kyu
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.309-316
    • /
    • 2010
  • This paper proposes healthcare bathing system for improving the multisensory function and not washing. We designed various types of bathtub for developing bathing system. This system consists of whirlpool bathtub for multisensory stimulation, a cover of bathtub with visual-auditory stimulation function, a small size PC for main control, touch panel, digital multimedia broadcasting (DMB), color-changeable LED mood lighting system for improving visual sensibility and speaker. We investigate the effects on autonomic nervous system during bathing with healthcare bathing system for improving the multisensory functions. To analysis physiological parameter, body temperature, blood pressure, intraocular pressure and heart rate variability (HRV) were measured before, during and after bath using healthcare bathing system. Experiments were performed on partial immersion bath and the water temperature was kept $39{\pm}0.5^{\circ}C$. The body temperature and the heart rate variability of the subject were measured every 5 minutes before, during, and after the bath. In analysis of HRV, the parasympathetic nerve increased from starting bath and decreased after 15 minutes. So the subjects felt comfortable at 15 minutes after starting bath. Blood pressure decreased to 16mmHg maximumly however pulse increased. Bath using healthcare bathing system for improving the multisensory functions affects positively the circulation of the blood. From this results, it leaves something to be desired in evaluation of serviceability and physiological analysis using the healthcare bathing system, however, we expect to analyze more clearly the relationship between the serviceability of product, physiological change and sensibility by various physiological parameters.

  • PDF

A Study on Rotary Type Embossing Process System for Spacer Tape Production (스페이서 테이프 생산을 위한 회전형 엠보싱 처리 시스템에 대한 연구)

  • Han, Seung-Chul;Kim, Jin-Ho;Lee, Sung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2458-2464
    • /
    • 2012
  • Recently, component materials for display are being developed into higher value-added industries which can strengthen national industrial competitiveness. However, a system for production of component materials for display is nearly depending on import, and its development level is inadequate. For this reason, localization of the embossing treatment system for production of the spacer tape and system improvement for increasing of productivity are needed. Therefore, in this paper, we propose rotary type embossing process system for spacer tape production for localization of system and increasing productivity. The system consists of unwinding, forming, cleaning, winding and testing parts. The mold of forming part is designed to rotary type. And we designed each part and made a prototype to test its performance. We measured embossing shapes, diameter and distance between each embossing and opposite embossing using three coordinate measuring machine. Also, we measured impurity level and the number of impurity particles of sample through the testing and cleaning part. Additionally, the productivity of spacer tape produced by the prototype is measured.