• Title/Summary/Keyword: Mold Die

Search Result 848, Processing Time 0.022 seconds

Densification Behavior of Metal Powder Under Warm Isostatic Pressing with a Metal Mold (금속 몰드를 이용한 금속 분말의 온간 등가압 성형)

  • Park, Jung-Goo;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.838-847
    • /
    • 2004
  • The effect of a metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with a metal mold. We use lead as a metal mold and obtain experimental data of metal mold properties. To simulate densification behavior of metal powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with a metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

Densification behavior of metal powder under warm isostaic pessing with metal mold (금속 몰드를 이용한 금속 분말의 온간 등가압 성형)

  • Park, Jung-Goo;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1352-1357
    • /
    • 2003
  • The effect of the metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with metal mold. We use lead as metal mold and obtain experimental data of metal mold property. To simulate densification of metal powder, the elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

  • PDF

Design and Development of the Simulated Die casting Process by using Rapid Prototyping (쾌속조형을 이용한 다이 캐스팅 제품의 시작 공정 설계 및 제작)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho;Park, Tae-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.167-173
    • /
    • 2001
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce AI, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared with the normal die-castings and the thin walls of the plaster mold cavity may not be completely filled. Because of lower mechanical properties induced by the large grain structure and incomplete filling, the conventional plaster casting process is not suitable for the trial die-casting process to obtain quality prototypes. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have a runner system, are made using these patterns. Pressurized vibration to imparted molten metal has made grain structure of castings much finer and improved fluidity of the molten enough to obtain complete filling at thin walls which may not be filled in the conventional plaster casting process..

  • PDF

A structural design of punch and die block for restriking drawing die (리스트라이킹 드로잉금형용 펀치와 다이블록의 구조설계)

  • Kim, Sei-Hwan
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Restriking method is to add to process in order to get the correct size and high precision accuracy of product which is formed in pre-process. This method is widely used at bending work and drawing work. Restriking die is particularly design and used as restriking process is performed. Therefore, production cost is increasing as one process or a two process are added. In this paper, punches and die block of square shell drawing die which could be performed drawing work and restriking process by using only one die are designed in order to solve these factors. The structure of sectional die which can integrate drawing die and restriking die was developed.

  • PDF

A structural study on mold EMBO equipment to minimize the influence on the bottom dead center displacement of precision high-speed press (정밀고속 PRESS 하사점 변위량에 영향을 최소화 하는 금형 EMBO 장치에 관한 구조 연구)

  • Kim, Seung-Soo
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • Laminate products for motor core are developed with a structure in which the importance of quality level and clamping force is influenced by the recent performance and safety of the product. It has been confirmed that the accuracy of the mold is emphasized, and that the accuracy of the tightening force produced by the stacked product for the motor core is greatly influenced by the change in the bottom dead center displacement of the aged high speed press. The reason why setting the mold, and test the effect of bottom dead center of high speed press is to improve product pull force in embossing process at mold. We have applied the system to minimize the effect on the damping displacement under the dynamical degree of the equipment by applying the emboss complement device which can test the influence and complement in the process.

Finite element analysis of spring back caused by frictional force in area of flange in press bending process (프레스 벤딩 공정에서 플랜지부의 마찰력이 스프링백에 미치는 영향에 대한 해석적 고찰)

  • Yun, Jae-Woong;Oh, Seung-Ho;Choi, Kye-Kwang;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.63-69
    • /
    • 2021
  • Springback is an essential task to be solved in order to make high-precision products in sheet metal forming. In this study, materials with four different elastic regions were used. For the forming analysis, the change of springback caused by the frictional force generated in the flange part during hat shape forming was considered by using the AutoForm analysis program. Factors affecting frictional force were blank holder force, friction coefficient, bead R and bead height. As a result of the forming analysis, the springback increases as the material with a larger elastic region increases. In addition, as the frictional force of the flange part increased, the tensile force in the forming direction increased and the springback decreased. In particular, the blank holder force and friction coefficient had a great effect on springback in mild materials (DC04, Al6016), and the bead effectively affects all materials. Through this study, it was considered that the springback decreased as the material with a smaller elastic region and the tensile force in the forming direction increased.

Development of µ-PIM standard mold with exchangable insert core in order to manufacture micro pattern (마이크로 패턴 성형을 위한 인서트 코어 적용 µ-PIM 표준금형 개발에 관한 연구)

  • Park, Chi Yoel;Seo, Chan-Yoel;Kim, Yongdae
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2017
  • Increased demand for parts with micro-pattern structure made of metals, ceramics, and composites in various fields such as medical ultrasonic sensors, CT collimators, and ultra-small actuator parts. Micro powder injection molding (PIM) is a technology for manufacturing micro size, high volume, complex, precision, net-shape components from either metal or ceramic powder. In the present study, a standard mold with a variable insert core capable of producing various micro patterns was investigated. An injection molding test was performed on a standard mold using a line type micro-pattern core having an aspect ratio of 2, a slenderness ratio of 70, a pattern size of $200{\mu}m$, and a pattern spacing of $150{\mu}m$. During the filling process, the deformation of the mold with large aspect ratio and slenderness ratio was analyzed by the experiment and the numerical simulation according to the position of the gate. We proposed a mold structure that minimizes mold deformation by gate modification and enables uniform pattern filling behavior.

Design and manufacturing of progressive die for Test Work (테스트워크 순차이송금형 설계 및 제작)

  • Kim, Young-Cheon;Sim, Eung-Chul;Lee, Hyun-Sang;Hong, Yong-Soo;Chung, Wan-Jin
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.17-23
    • /
    • 2012
  • In April 2010, the die and mould grand prix for university student was held in Osaka as a special event of Inter Mold Japan. The students from Korea, China, and Japan participated to demonstrate the design and manufacturing skill of die and mould. Based on the given product drawing of Test Work, progressive die should be designed and manufactured. Also, production of Test Work should be carried out. This study had been conducted to participate in the grand prix and to learn practical knowledge and experience from real die design and making. Test Work is made of SPCC and includes piercing, blanking, deep drawing and burring. From the analysis of product drawing, process planning and die design was carried out. Progressive die for Test Work was manufactured using CNC milling, grinding, wire-cutting and polishing. The production was successfully completed using mechanical press and product showed very good accuracy satisfying all dimensional tolerances.

  • PDF