Hyein Kim;Yeeun Kwon;Seung-Yoon Back;Jaeyoung Hwang;Seok-Woo Son;HyangSuk Park;Eun-Jeong Cha
Atmosphere
/
v.34
no.2
/
pp.83-95
/
2024
Atmospheric rivers (ARs) are closely related to local precipitation which can be both beneficial and destructive. Although several studies have evaluated their predictability, there is a lack of studies on East Asian ARs. This study evaluates the prediction skill of East Asian ARs in the Korean Integrated Model (KIM) for 2020~2022 summer. The spatial distribution of AR frequency in KIM is qualitatively similar to the observation but overestimated. In particular, the model errors greatly increase along the boundary of the western North Pacific subtropical high as the forecast lead time increases. When the prediction skills are quantitatively verified by computing the Anomaly Correlation Coefficient and Mean Square Skill Score, the useful prediction skill of daily AR around the Korean Peninsula is found up to 5 days. Such prediction limit is primarily set by the wind field errors with a minor contribution of moisture distribution errors. This result suggests that the improved prediction of atmospheric circulation field can improve the prediction of East Asian summer ARs and the associated precipitation.
In order to determine the prediction possibility of heavy rainfall, a variety of analyses was conducted by using three-dimensional data obtained from Korea Local Analysis and Prediction System (KLAPS) re-analysis data. Strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Heavy rainfall occurred in the cloud system with a thick convective clouds. The moisture convergence, temperature and potential temperature advection showed increase into the heavy rainfall occurrence area. The distribution of integrated liquid water content tended to decrease as rainfall increased and was characterized by accelerated convective instability along with increased buoyant energy. In addition, changes were noted in the various characteristics of instability indices such as K-index (KI), Showalter Stability Index (SSI), and lifted index (LI). The meteorological variables used in the analysis showed clear increases or decreases according to the changes in rainfall amount. These rapid changes as well as the meteorological variables changes are attributed to the surrounding and meteorological conditions. Thus, we verified that heavy rainfall can be predicted according to such increase, decrease, or changes. This study focused on quantitative values and change characteristics of diagnostic variables calculated by using numerical models rather than by focusing on synoptic analysis at the time of the heavy rainfall occurrence, thereby utilizing them as prognostic variables in the study of the predictability of heavy rainfall. These results can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of such precipitation. In the analysis of various case studies of heavy rainfall in the future, our study result can be utilized to show the development of the prediction of severe weather.
Laboratory column tests were conducted to analyze infiltration and water redistribution processes on the basis of rainfall. To efficiently measure moisture content within soil layers, this research developed a predictive model grounded in a convolutional neural network (CNN), a deep learning technique. The digital images obtained during the column tests were incorporated into the established CNN. The moisture content of each soil layer over time was effectively measured. The measured values were also in relatively good agreement with the moisture content determined using the moisture sensors installed for each soil layer. The use of CNN enabled a comprehensive understanding of continuous moisture distribution within the soil layers, as well as the infiltration process according to soil texture and initial moisture content conditions.
Landslides are one of the most common natural hazards causing significant damage and casualties every year. In Korea, the increasing trend in landslide occurrence in recent decades, caused by climate change, has set off an alarm for researchers to find more reliable methods for landslide prediction. Therefore, an accurate landslide-susceptibility assessment is fundamental for preventing landslides and minimizing damages. However, analyzing the stability of a natural slope is not an easy task because it depends on numerous factors such as those related to vegetation, soil properties, soil moisture distribution, the amount and duration of rainfall, earthquakes, etc. A variety of different methods and techniques for evaluating landslide susceptibility have been proposed, but up to now no specific method or technique has been accepted as the standard method because it is very difficult to assess different methods with entirely different intrinsic and extrinsic data. Landslide prediction methods can fall into three categories: empirical, statistical, and physical approaches. This paper reviews previous research and surveys three groups of landslide prediction methods.
Kim, Hak-Seung;Lee, Jang-Guen;Kim, Young-Seok;Kang, Jae-Mo;Hong, Seung-Seo
Proceedings of the Korean Geotechical Society Conference
/
2010.09a
/
pp.1151-1155
/
2010
Frost depth is one of important factors to design roadway structure, and it can be estimated with numerical simulation on thermal distribution through subgrade soils. Thermal conductivity is a key parameter for accurate prediction on thermal distribution, but there are few studies on thermal conductivity of subgrade soils in Korea. Thermal conductivity can be affected by several factors such as dry density, moisture content, and saturation degree based on previous researches. Two empirical equations to estimate thermal conductivity are applied to access the accuracy of these equations with experimental data. Results indicate that the equation can be used to estimate thermal conductivity with proper quartz fraction.
Journal of the Korean Society of Hazard Mitigation
/
v.8
no.2
/
pp.59-63
/
2008
The surface runoff is one of the important components for the surface water balance. However, most Land Surface Models(LSMs), coupled to climate models at a large scale for the prediction and prevention of disasters caused by climate changes, simplistically estimate surface runoff from the soil water budget. Ignoring the role of surface flow depth on the infiltration rate causes errors in both surface and subsurface flow calculations. Therefore, for the comprehensive terrestrial water and energy cycle predictions in LSMs, a conjunctive surface-subsurface flow model at a large scale is developed by coupling a 1-D diffusion wave model for surface flow with the 3-D Volume Averaged Soil-moisture Transport(VAST) model for subsurface flow. This paper describes the new conjunctive surface-subsurface flow formulation developed for improvement of the prediction of surface runoff and spatial distribution of soil water by topography, along with basic schemes related to the terrestrial hydrologic system in Common Land Model(CLM), one of the state-of-the-art LSMs.
Proceedings of the Korea Institute of Fire Science and Engineering Conference
/
1997.11a
/
pp.305-310
/
1997
There are many parameters in prediction of forest fire spread. The variables such as fuel moisture, fuel loading, wind velocity, wind direction, relative humidity, slope, and solar aspect have important effects on fire. Particularly, wind and slope factors are considered to be the most important parameters in propagation of forest fire. Generally, slope effect cause different wind distribution in mountain area. However, this effect is disregarded in complex geometry. In this paper, wind is estimated by applying computational fluid dynamics to the forest geometry. Wind velocity data is obtained by using CFD code with Newtonian model and slope is calculated with geometrical data. These data are applied fer 2-dimentional forest fire spreading algorithm with Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire is made. The algorithm spread of forest fire will help fire fighter to get the basic data far fire suppression and the prediction to behavior of forest fire.
Korean Journal of Agricultural and Forest Meteorology
/
v.10
no.2
/
pp.35-46
/
2008
Soil moisture is one of the important components in hydrological processes and also controls the subsurface flow mechanism at a hillslope scale. In this study, time series of soil moisture were measured at a hillslope located in Gwangneung National Arboretum, Korea using a multiplex Time Domain Reflectometry(TDR) system measuring soil moisture with bi-hour interval. The Box-Jenkins transfer function and noise model was used to estimate spatial distributions of soil moisture histories between May and September, 2007. Rainfall was used as an input parameter and soil moisture at 10 cm depth was used as an output parameter in the model. The modeling process consisted of a series of procedures(e.g., data pretreatment, model identification, parameter estimation, and diagnostic checking of selected models), and the relationship between soil moisture and rainfall was assessed. The results indicated that the patterns of soil moisture at different locations and slopes along the hillslope were similar with those of rainfall during the measurment period. However, the spatial distribution of soil moisture was not associated with the slope of the monitored location. This implies that the variability of the soil moisture was determined more by rainfall than by the slope of the site. Due to the influence of vegetation activity on soil moisture flow in spring, the soil moisture prediction in spring showed higher variability and complexity than that in early autumn did. This indicates that vegetation activity is an important factor explaining the patterns of soil moisture for an upland forested hillslope.
Journal of the Korea institute for structural maintenance and inspection
/
v.16
no.5
/
pp.112-120
/
2012
A numerical model considering the internal vaporization and the creep effect, in the form of a analytical program, for tracing the behavior of high strength concrete(HSC) members exposed to fire is presented. The two stages, i.e., spalling procedure and fire resistance time, associated with the thermal, moisture flow, creep and structural analysis, for the prediction of fire resistance behavior are explained. The use of the analytical program for tracing the response of HSC member from the initial pre-loading stage to collapse, due to fire, is demonstrated. Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member, so that the prediction method of the moisture distribution inside the concrete members at fire is developed. The validity of the numerical model used in this program is established by comparing the predictions from this program with results from others fire resistance tests. The analytical program can be used to predict the fire resistance of HSC members for any value of the significant parameters, such as load, sectional dimensions, member length, and concrete strength.
Formulation of quasi-dynamic wetness index was derived to predict the spatial and temporal distribution of the soil moisture. The algorithm of dynamic wetness index was developed through introducing the convolution integral with the rainfall input. The spatial and temporal behaviors of the wetness index of the Sulmachun Watershed was calculated using the digital elevation model(DEM) and the rainfall data for two years. The spatial distribution of the dynamic wetness index shows most dispersive feature of flow generation among the three assumptions of steady, quasi-dynamic and dynamic. The statistical distribution of the quasi-dynamic wetness index and the dynamic wetness index approximate to the steady state wetness index as the time step is increased. The dynamic wetness index shows mixed distribution of the normalized probability density function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.