• Title/Summary/Keyword: Mohr-Coulomb 모델

Search Result 70, Processing Time 0.031 seconds

Earth Pressure Analysis of Tunnel Ceiling according to Tunnel Plastic Zone (터널 소성영역에 따른 터널 천단토압 해석)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.753-764
    • /
    • 2020
  • In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect.

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.

Numerical Studies on Combined VM Loading and Eccentricity Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-모멘트 조합하중 지지력과 편심계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.59-72
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - moment loading capacity was studied by three-dimensional numerical modelling. Mohr-Coulomb plasticity model with the associated flow-rule was used for the soil. After comparing the results of the swipe loading method, which can construct the interaction diagram with smaller number of analyses, and those of the probe loading method, which can simulate the load-paths in the conventional load tests, it was found that both loading methods give similar results. Conventional methods based on the effective width or area concept and the results by eccentricity factor ($e_{\gamma}$) were reviewed. The results by numerical modelling of this study were compared with those of previous studies. The combined loading capacity for vertical (V) - moment (M) loading was barely affected by the internal friction angle. It was found that the effective width concept expressed in the form of eccentricity factor can be applied to circular footings. The numerical results of this study were smaller than the previous experimental results and the differences between them increased with the eccentricity and moment load. Discussions are made on the reason of the disparities between the numerical and experimental results, and the areas for further researches are mentioned.

Development of Numerical Method for Large Deformation of Soil Using Particle Method (입자법을 이용한 토사의 대변형 해석법 개발)

  • Park, Sung-Sik;Lee, Do-Hyun;Kwon, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.35-44
    • /
    • 2013
  • In this study, a particle method without using grid was applied for analysing large deformation problems in soil flows instead of using ordinary finite element or finite difference methods. In the particle method, a continuum equation was discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. Soil behavior changes from solid to liquid state with increasing water content or external load. The Mohr-Coulomb failure criterion was incorporated into the particle method to analyze such three-dimensional soil behavior. The yielding and hardening behavior of soil before failure was analyzed by treating soil as a viscous liquid. First of all, a sand column test without confining pressure and strength was carried out and then a self-standing clay column test with cohesion was carried out. Large deformation from such column tests due to soil yielding or failure was used for verifying the developed particle method. The developed particle method was able to simulate the three-dimensional plastic deformation of soils due to yielding before failure and calculate the variation of normal and shear stresses both in sand and clay columns.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Stress and Displacement Analysis of Arctic Frostheave with Gas Pipeline using Finite Element Method (극한지 동상융기에 의한 가스배관과 토양의 응력 및 변위 해석)

  • Kim, Kyung Il;Yeom, Kyu Jung;Oh, Kyu Hwan;Kim, Woo Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.47-53
    • /
    • 2015
  • According to the interest of the arctic's resources rising, many countries are making moves to develop these resources. Korea has also undergone negotiations with Russia to develop natural gas resources in Siberia, which is geographically relatively close. However, the Arctic resources market is dominate, it is essential to develop construction techniques that are suited for the Arctic. Gas pipelines in the Arctic are affected by frost heave due to the region's extremely low temperatures, a condition that is not present in Korea, making it vital to develop a finite element method (FEM) model. This research paper study a model of gas pipe lines in the Arctic and frost heave using FEM.

A Study on the Stability of Deep Tunnels Considering Brittle Failure Characteristic (취성파괴특성을 고려한 심부터널의 안정성 평가기법 연구)

  • Park, Hyun-Ik;Park, Yeon-Jun;You, Kwang-Ho;Noh, Bong-Kun;Seo, Young-Ho;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.304-317
    • /
    • 2009
  • Most crystalline rocks have much higher compressive strength than tensile strength and show brittle failure. In-situ rock mass, strong enough in general sense, often fails in brittle manner when subjected to high stress exceeding strength in due of geometrically induced stress concentration or of high initial stress. Therefore, it is necessary to verify the brittle failure characteristics of rock and rock mass for proper stability assessment of underground structures excavated in great depths. In this study, damage controlled tests were conducted on biotite-granite and granitic gneiss, which are the two major crystalline rock types in Korea, to obtain the strain dependency characteristics of the cohesion and friction angle. A Cohesion-Weakening Friction-Strengthening (CWFS hereafter) model for each rock type was constructed and a series of compression tests were carried out numerically while varying confining pressures. The same tests were also conducted assuming the rock is Mohr-Coulomb material and results were compared.

Study(V) on Development of Charts and Equations Predicting Allowable Compressive Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Analysis of Results and Data by Parametric Numerical Analysis - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연속 연구(V) - 매개변수 수치해석 자료 분석 -)

  • Park, Mincheol;Kwon, Oh-Kyun;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.47-66
    • /
    • 2019
  • A parametric numerical analysis according to diameter, length, and N values of soil was conducted for the PHC pile socketed into weathered rock through sandy soil layers. In the numerical analysis, the Mohr-Coulomb model was applied to PHC pile and soils, and the contacted phases among the pile-soil-cement paste were modeled as interfaces with a virtual thickness. The parametric numerical analyses for 10 kinds of pile diameters were executed to obtain the load-settlement relationship and the axial load distribution according to N-values. The load-settlement curves were obtained for each load such as total load, total skin friction, skin friction of the sandy soil layer, skin friction of the weathered rock layer and end bearing resistance of the weathered rock. As a result of analysis of various load levels from the load-settlement curves, the settlements corresponding to the inflection point of each curve were appeared as about 5~7% of each pile diameter and were estimated conservatively as 5% of each pile diameter. The load at the inflection point was defined as the mobilized bearing capacity ($Q_m$) and it was used in analyses of pile bearing capacity. And SRF was appeared above average 70%, irrespective of diameter, embedment length of pile and N value of sandy soil layer. Also, skin frictional resistance of sandy soil layers was evaluated above average 80% of total skin frictional resistance. These results can be used in calculating the bearing capacity of prebored PHC pile, and also be utilized in developing the bearing capacity prediction method and chart for the prebored PHC pile socketed into weathered rock through sandy soil layers.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Numerical Analysis of Pile Foundation Considering the Thawing and Freezing Effects (융해-동결작용을 고려한 말뚝 기초에 관한 수치해석 연구)

  • Park, Woo-Jin ;Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.51-63
    • /
    • 2023
  • Numerical analysis was conducted to determine the effect of soil behavior by thawing and freezing of seasonal frozen soil on pile foundations. The analysis was performed using the finite element method (FEM) to simulate soil-pile interaction based on the atmosphere temperature change. Thermomechanical coupled modeling using FEM was applied with the temperature-dependent nonlinear properties of the frozen soil. The analysis model cases were applied to the MCR and HDP models to simulate the elastoplastic behavior of soil. The numerical analysis results were analyzed and compared with various conditions having different length and width sizes of the pile. The results of the numerical analysis showed t hat t he HDP model was relat ively passive, and t he aspect and magnit ude of t he bearing capacit y and displacement of the pile head were similar depending on the length and width of the pile conditions. The vertical displacement of the pile head by thawing and freezing of the ground showed a large variation in displacement for shorter length conditions. In the MCR model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0387 and 0.0277 m, respectively. In the HDP model, the vertical displacement appeared in the maximum thaw settlement and frost heaving of 0.0367 and 0.0264 m, respectively. The results of the pile bearing capacity for the two elastoplastic models showed a larger difference in the width condition than the length condition of the pile, with a maximum of about 14.7% for the width L condition, a maximum of about 5.4% for M condition, and a maximum of about 5.3% for S condition. The significance of the effect on the displacement of the pile head and the bearing capacity depended on the pile-soil contact area, and the difference depended on the presence or absence of an active layer in the soil and its thickness.