DOI QR코드

DOI QR Code

Stress and Displacement Analysis of Arctic Frostheave with Gas Pipeline using Finite Element Method

극한지 동상융기에 의한 가스배관과 토양의 응력 및 변위 해석

  • Kim, Kyung Il (Dept. of Material Science and Engineering, Seoul National University) ;
  • Yeom, Kyu Jung (Dept. of Material Science and Engineering, Seoul National University) ;
  • Oh, Kyu Hwan (Dept. of Material Science and Engineering, Seoul National University) ;
  • Kim, Woo Sik (Korea Gas Corporation, KOGAS Research Institute)
  • Received : 2015.09.08
  • Accepted : 2015.10.20
  • Published : 2015.10.30

Abstract

According to the interest of the arctic's resources rising, many countries are making moves to develop these resources. Korea has also undergone negotiations with Russia to develop natural gas resources in Siberia, which is geographically relatively close. However, the Arctic resources market is dominate, it is essential to develop construction techniques that are suited for the Arctic. Gas pipelines in the Arctic are affected by frost heave due to the region's extremely low temperatures, a condition that is not present in Korea, making it vital to develop a finite element method (FEM) model. This research paper study a model of gas pipe lines in the Arctic and frost heave using FEM.

최근 극한지 자원에 대한 관심이 높아지면서 세계 각국에서 자원을 개발하려는 움직임을 보이고 있다. 대한민국도 이러한 정세에 맞춰 비교적 가까운 시베리아의 천연가스자원을 개발하기 위한 러시아와의 협상도 이루어진 상태이다. 그러나 극한지 에너지자원 개발 및 운송을 위해서는 국내환경과 상이한 극한지 건설기술 개발이 필수적이다. 극한지 가스배관의 경우 극저온의 환경에 따라 국내에서 볼 수 없는 외부환경중 하나인 동상융기의 영향을 받게 되는데 이에 맞는 새로운 유한요소해석모델이 필요하다. 본 연구에서는 유한요소해석을 활용하여 극한지 가스배관과 동상융기를 모델링하였다. 또한 이 모델에 극한지의 온도에 따른 토양 및 배관의 물성을 부가하고 frozen bulb의 영향을 실제 환경과 비교하여 해석을 진행하였으며, mohr-coulomb이론을 적용하여 동상융기에 따른 배관과 토양이 받는 응력 및 변위를 출력하여 분석하였다.

Keywords

References

  1. Kim, Young jin, Kang, Jae Mo, Kim, Young Suk and Hong, Seung Seo., "Anlysis of Environmental and Geographic Charactieristic and Respurece Development Condition", Civil Expo, 4331-4334, (2007)
  2. Michael Bradshaw., "A New Energy Age in Pacific Russia: Lessons from the Sakhalin Oil and Gas Projects", Eurasian Geography and Economics, 51(3), 330-359, (2010) https://doi.org/10.2747/1539-7216.51.3.330
  3. Kim, Woo Sik, "Technology trend of energy pipe", KSME, 54(1), 53-57, (2014)
  4. Alska Stand Alone Gas Pipline, "Design Methodology to Address Frost heave Potential", (2011)
  5. Kazuhiko O'hashi, "Study on the unique design, construction and operation of gas pipelines in the permafrost of east siberia", Kyoto university, (1997)
  6. Mackenzie Valley Pipeline, "Arctic Engineering", (2004)
  7. Arnold Verruijt., "Soil Mechanics", (2004)
  8. J. S. Dugdale, D. K. C. MacDonald, "The Thermal Expansion of Solids", Physical Review Letters, 89, 832-, (1952)
  9. Klaus-Dieter Keller, QtiPlot, "Density of ice and water as function of temperature", (2012)
  10. Kim, Hyung sik, Kim, Woo Sik, Bang, In Hwan, Oh, Kyuhwan and Hong, Sung Ho., "Analysis of Stresses on Buried Natural Gas Pipeline Subjected to Ground Subsidence", KOSOS, 13(2), 54-64, (1998)
  11. Lee, Ouk Sub and Kim, Dong Hyeok., "Effect of Ground Subsidence on Reliability of Buried Pipelines", KSPE, 21(1), 173-180, (2004)
  12. Yaping Wu, Yu Sheng, Yong Wang, Huijun Jin, Wu Chen., "Stresses and deformations in a buried oil pipeline subject to differential frost heave in permafrost regions", Cold Regions Science and Technology, 64, 256-261, (2010) https://doi.org/10.1016/j.coldregions.2010.07.004
  13. Zhi Wen, Yu Sheng, Huijin Jin, Shuangyang Li, Guoyu Li, Yonghong Niu., "Thermal elastoplastic computation model for a buried oil pipeline in frozen ground", Cold Regions Science and Technology, 64, 248-255, (2010) https://doi.org/10.1016/j.coldregions.2010.01.009
  14. Levy, Bass, Stern, "Handbook of Elastic Properties of Solids, Liquids, and Gases", (2000)
  15. ASME B31.8 (2010)