• Title/Summary/Keyword: Modulus of soils

Search Result 184, Processing Time 0.034 seconds

Evaluation of preconsolidation stress by shear wave velocity

  • Yoon, Hyung-Koo;Lee, Changho;Kim, Hyun-Ki;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.275-287
    • /
    • 2011
  • The behaviors of saturated soils such as compressibility and permeability are distinguished by preconsolidation stress. Preconsolidation stress becomes an important design parameter in geotechnical structures. The goal of this study is to introduce a new method for the evaluation of preconsolidation stress based on the shear wave velocity at small strain, using Busan, Incheon, and Gwangyang clays in Korea. Standard consolidation tests are conducted by using an oedometer cell equipped with bender elements. The preconsolidation stresses estimated by shear wave velocity are compared with those evaluated by the Casagrande, constrained modulus, work, and logarithmic methods. The preconsolidation stresses estimated by the shear wave velocity produce very similar values to those evaluated by the Onitsuka method (one of the logarithmic methods), which yields an almost real preconsolidation stress. This study shows that the shear wave velocity method provides a reliable method for evaluating preconsolidation stress and can be used as a complementary method.

Evaluation of Engineering Properties of CLSM using Weathered Granite Soils (화강풍화토를 이용한 CLSM의 공학적 특성평가)

  • Lim, Yu-Jin;Seo, Chang-Beom
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • In this study, flowable backfill made with weathered granite soil is tested to provide basic engineering properties that can be used as design input to overcome settlement problems in road pavement due to low stiffness of backfill which is generated by porosity of the soil. For design purpose, a proper mixing ratio is developed first. Then several test methods including FF/RC, PMT and LDWT including axial compression test are adapted for checking stiffness and measuring axial strength of the material separately that can be used for design values.

Characteristics of Crushed Oyster-shell as a Substitute of Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 재료로서 파쇄 굴패각의 특성조사)

  • 윤길림;윤여원;채광석;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.281-290
    • /
    • 2003
  • In order to investigate recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including permeability, confined compression and shear strength of crushed oyster shell were quantitatively examined in terms of fineness modulus and relative density of crushed oyster-shell. Experimental results show that the crushed oyster-shells are lighter than sand in weight, and have similar characteristics on permeability and shear strength to sandy soils. The oyster-shell can be considered as highly crushable material but not much crushable with existing high loads. Based on the laboratory test results, it is highly fudged that the crushed oyster-shell can be a substitute of sand as SCP materials.

Development on Design Method for Railway Roadbed by Geocell System (지오셀을 이용한 철도노반의 설계기법 개발)

  • Shim, Jae-Bum;Shin, Min-Ho;Cho, Sam-Deok;Chae, Young-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Since 1980's in U.S.A and Japan, the studies on increasing the bearing capacity of railway roadbed using geocell system have been conducted for repair and reinforcement of railways constructed on soft soils. In this study, the railway roadbed reinforced with geocell system, used for repair and reinforcement of existing railways in Korea, has been analyzed and investigated the results of the previous studies conducted in Korea and other nations. And the method for estimating the railway roadbed thickness was developed based on the equivalent method using the multi-layer theory and the deformation modulus Ev.

  • PDF

Data Reduction and Analysis of the Resonant Column Testing Based on the Equation of Motion (운동방정식에 기초한 공진주 실험의 자료분석 및 해석)

  • 조성호;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.133-144
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and material damping factor of soils. The method has been widely used for many applications and its importance has increased. Since the first use of the testing method in 1960's, the low-technology electronic devices fir testing and data acquisition have limited the measurement only to the amplitude of the linear spectrum. The limitations of the testing method are also attributed to the assumption of linear-elastic material in the theory of the resonant column testing and also to the incomplete understanding of the dynamic behaviour of the resonant column testing device. Recently, Joh et al. proposed a theory to overcome the limitations of the resonant column testing by deriving the equation of motion and providing its solution for the resonant column testing device. This study proposed the improved data reduction and analysis method for the resonant column testing, thanks to the advanced data acquisition system and the new theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were performed fir Joomunjin sand, which verified the feasibility of the proposed method and revealed the limitations of the conventional data reduction and analysis method.

Characteristics of Lateral Flow due to Embankments for Road Construction on Soft Grounds Using Vertical Drain Methods (연직배수공법이 적용된 연약지반 상에 도로성토로 인한 측방유동의 특성)

  • Hong, Won-Pyo;Kim, Jung-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.5-15
    • /
    • 2012
  • Field monitoring data for embankments in thirteen road construction sites at coastal area of the Korean Peninsula were analyzed to investigate the characteristics of lateral flow in soft grounds, to which vertical drain methods were applied. First of all, the effect of the embankment scale on the lateral flow was investigated. Thicker soft soils and lager relative embankment scale produced more horizontal displacements in soft grounds. Especially, if thick soft grounds were placed, the relative embankment scale, which was given by the ratio of thickness of soft ground to the bottom width of embankments, became larger and in turn large horizontal displacement was produced. And also higher filling velocity of embankments induced more horizontal displacements in soft grounds. The other major factors affecting the lateral flow in soft ground were the thickness and undrained shear strength of soft grounds, the soil modulus and the stability number. Maximum horizontal displacement was induced by less undrained shear strength and soil modulus of soft grounds. Also more stability numbers produced more maximum horizontal displacements. When the shear deformation does not develop, the stability number was less than 3.0 and the safety factor of bearing was more than 1.7. However, if the stability number was more than 5.14 and the safety factor of bearing was less than 1.0, the unstable shear failure developed in soft ground. 50mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear deformation in soft ground, while 100mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear failure in soft ground.

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF

Compressibility and Stiffness Characteristics of Vanishing Mixtures (지반 소실 혼합재의 압축성 및 강성 특성)

  • Truong, Q. Hung;Eom, Yong-Hun;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.103-111
    • /
    • 2008
  • Soils naturally contain grains of different minerals which may be dissolved under chemical or physical processes. The dissolution leads changes in microstructure of particulate media, such as an increase in local void or permeability, which affects the strength and deformation of soils. This study focuses on the small strain stiffness characteristics of vanishing mixtures, which consist of sand and salt particles at different volume fractions. Experiments are carried out in a conventional oedometer cell (Ko-loading) integrated with bender elements for the measurement of shear waves. Dissolutions of particles are implemented by saturating the mixtures at various confining stresses. Axial deformation and shear waves are recorded after each loading stage and during dissolution process. Experimental results show that after dissolution, the vertical strain and the void ratio increase, while the shear wave velocity and small strain shear modulus decrease. The decrease of the velocity results from the void ratio increase and particle contact decrease. The process monitoring during dissolution of the particles shows that the vertical strain dramatically increases at the beginning of the saturation process and converges after vanishing process finishes, and that the shear wave velocity decreases at the beginning and increases due to the particle reorientation. Specimens prepared by sand and salt particles are proved to be able to provide a valuable insight in macro structural behaviors of the vanishings mixtures.

Development of Constitutive Equation for Soils Under Cyclic Loading Conditions (反復荷重을 받는 흙의 構成關係式 開發)

  • Jang, Byeong-Uk;Song, Chang-Seop
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • Various soil behaviors usually occurring in the geotechnical problems, such as, cutting and embankments, stability of slope, seepage, consolidations, shearing failures and liquefaction, should be predicted and analyzed in any way. An approach of these predictions may be followed by the development of the constitutive equations as first and subsequently solved by numerical methods. The purpose of this paper is develop the constitutive equation of sands uder monotonic or cyclic loadings. The constitutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parameter by Sekiguchi et al and Pender's theory is derived. And the equation is included a new stress parameter, hardening function, Bauschinger's effects and Pender's theory. The model is later evaluated and confirmed the validity by the test data of Ottawa sand, Banwol sand Hongseong sand. The following conclustions may be drawn: 1. The consititutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parpameter by Sekiguchi et al and Pender's theory is derived. The equation in included a new stress parameter, hardening function, Bauschinger's effect and Pender's theory. 2. For Ottawa sand, the result of the constitutive equation shows a better agreement than that of Oka et al. The result of axial strain agrees well with the tested data. However, the result of horizontal strain is little bit off for the cyclic loadings or large stress. It is thought that the deviation may be improved by considering Poisson's ratio and precise measurement of shear modulus. 3. Banwol sand is used for the strain and stress tests with different relative densitites and confining pressures. The predeicted result shows a good agreement with the tested data because the required material parameters were directly measurd and determined form this laboratory. 4. For Hongseong sand, the tests under same amplitude of cyclic deviatoric stress shows a similar result with the tested data in absolute strain. It shows the acute shape of turning point because the sine wave of input is used in the test but the serrated wave in prediction.

  • PDF

Effects of soil-structure interaction on construction stage analysis of highway bridges

  • Ates, Sevket;Atmaca, Barbaros;Yildirim, Erdal;Demiroz, Nurcan Asci
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.169-186
    • /
    • 2013
  • The aim of this paper is to determine the effect of soil-structure interaction and time dependent material properties on behavior of concrete box-girder highway bridges. Two different finite element analyses, one stage and construction stage, have been carried out on Komurhan Bridge between Elazi$\breve{g}$ and Malatya province of Turkey, over Fırat River. The one stage analysis assume that structure was built in a second and material properties of structure not change under different loads and site conditions during time. However, construction stage analysis considers that construction time and time dependent material properties. The main and side spans of bridge are 135 m and 76 m, respectively. The bridge had been constructed in 3 years between 1983 and 1986 by balanced cantilever construction method. The parameters of soil-structure interaction (SSI), time dependent material properties and construction method are taken into consideration in the construction stage analysis while SSI is single parameter taking into consideration in the one stage analysis. The 3D finite element model of bridge is created the commercial program of SAP2000. Time dependent material properties are elasticity modulus, creep and shrinkage for concrete and relaxation for steel. Soft, medium, and firm soils are selected for evaluating SSI in both analyses. The results of two different finite element analyses are compared with each other. It is seen that both construction stage and SSI have a remarkable effect on the structural behavior of the bridge.