• Title/Summary/Keyword: Modulus of ground

Search Result 233, Processing Time 0.022 seconds

Low-Soil Disturbance In-Situ Test Method Development and Its Application : Screw Plate Loading Test (지반의 교란을 최소화 한 원위치시험법 개발 및 적용 : 스크류재하시험)

  • Lee, Yong-Su;Hwang, Woong-Ki;Choi, Yong-Kyu;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.977-986
    • /
    • 2009
  • Sampling disturbance can introduce considerable errors in the laboratory estimation of geotechnical properties of soils, and the results obtained from sophisticated sampling and careful laboratory testing are not matching with field behavior. Therefore, it is advantage to adopt in-situ testing techniques for the estimation of geotechnical parameters. Therefore, Screw plate loading test, one of new field test technologies, has been investigated in this study. This test can be utilized to find out important properties of soils such as load-displacement, elastic modulus, and shear strength. The screw plate loading test modified from the plate loading test is an experiment underneath ground by inserting a spiral type of auger screw. The structure and characteristics of the screw plate loading test device was examined in detail. In addition, The new screw plate loading test device was manufactured to refer the previous studies. The reliability of developing screw plate loading test was examined through the analysis of the laboratory test.

  • PDF

Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations (경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.

Probabilistic analysis of spectral displacement by NSA and NDA

  • Devandiran, P.;Kamatchi, P.;Rao, K. Balaji;Ravisankar, K.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.439-459
    • /
    • 2013
  • Main objective of the present study is to determine the statistical properties and suitable probability distribution functions of spectral displacements from nonlinear static and nonlinear dynamic analysis within the frame work of Monte Carlo simulation for typical low rise and high rise RC framed buildings located in zone III and zone V and designed as per Indian seismic codes. Probabilistic analysis of spectral displacement is useful for strength assessment and loss estimation. To the author's knowledge, no study is reported in literature on comparison of spectral displacement including the uncertainties in capacity and demand in Indian context. In the present study, uncertainties in capacity of the building is modeled by choosing cross sectional dimensions of beams and columns, density and compressive strength of concrete, yield strength and elastic modulus of steel and, live load as random variables. Uncertainty in demand is modeled by choosing peak ground acceleration (PGA) as a random variable. Nonlinear static analysis (NSA) and nonlinear dynamic analysis (NDA) are carried out for typical low rise and high rise reinforced concrete framed buildings using IDARC 2D computer program with the random sample input parameters. Statistical properties are obtained for spectral displacements corresponding to performance point from NSA and maximum absolute roof displacement from NDA and suitable probability distribution functions viz., normal, Weibull, lognormal are examined for goodness-of-fit. From the hypothesis test for goodness-of-fit, lognormal function is found to be suitable to represent the statistical variation of spectral displacement obtained from NSA and NDA.

Time-dependent analysis of slender, tapered reinforced concrete columns

  • de Macedo Wahrhaftig, Alexandre
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.229-247
    • /
    • 2020
  • This study analyzed stresses in concrete and its reinforcement, computing the additional loading transferred by concrete creep. The loading varied from zero, structure exclusively under its self-weight, up to the critical buckling load. The studied structure was a real, tapered, reinforced concrete pole. As concrete is a composite material, homogenizing techniques were used in the calculations. Due to the static indetermination for determining the normal forces acting on concrete and reinforcement, equations that considered the balance of forces and compatibility of displacement on cross-sections were employed. In the mathematical solution used to define the critical buckling load, all the elements of the structural dynamics present in the system were considered, including the column self-weight. The structural imperfections were linearized using the geometric stiffness, the proprieties of the concrete were considered according to the guidelines of the American Concrete Institute (ACI 209R), and the ground was modeled as a set of distributed springs along the foundation length. Critical buckling loads were computed at different time intervals after the structure was loaded. Finite element method results were also obtained for comparison. For an interval of 5000 days, the modulus of elasticity and critical buckling load reduced by 36% and 27%, respectively, compared to an interval of zero days. During this time interval, stress on the reinforcement steel reached within 5% of the steel yield strength. The computed strains in that interval stayed below the normative limit.

A Study on Mechanical Properties of Porous Concrete Using Cementless Binder

  • Lee, Jong-Won;Jang, Young-Il;Park, Wan-Shin;Kim, Sun-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.527-537
    • /
    • 2016
  • This study evaluated the mechanical characteristics and durability of porous concrete produced with a cementless binder based on ground granulated blast furnace slag (BFS), fly ash (FA) and flue gas desulfurization gypsum (CP). As a result, the void ratio was increased slightly from the target void ratio, by 1.12-1.42 %. Through evaluating the compressive strength, it was found that the compressive strength of porous concrete with cementless binder decreased in comparison to the compressive strength of porous concrete with ordinary Portland cement (OPC), but the difference was insignificant, at 0.6-1.4 MPa. Through the freeze-thawing test to evaluate the durability, it was found that the relative dynamic elastic modulus of porous concrete with cementless binder decreased to 60 % or less at 80 cycles. The result of the chemical resistance test showed that the mass reduction rate was 12.3 % at 5 % HCl solution, and 12.7 % at 12.3 and 5 % $H_2SO_4$ solutions.

Multichannel Analysis of Surface Waves (MASW) Active and Passive Methods

  • Park, Choon-Byong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-22
    • /
    • 2006
  • Shear modulus is directly linked to material's stiffness and is one of the most critical engineering parameters. Seismically, shear-wave velocity (Vs) is its best indicator. Although methods like refraction, down-hole, and cross-hole shear-wave surveys can be used, they are generally known to be tougher than any other seismic methods in field operation, data analysis, and overall cost. On the other hand, surface waves, commonly known as ground roll, are always generated in all seismic surveys with the strongest energy, and their propagation velocities are mainly determined by Vs of the medium. Furthermore, sampling depth of a particular frequency component of surface waves is in direct proportion to its wavelength and this property makes the surface wave velocity frequency dependent, i.e., dispersive. The multichannel analysis of surface waves (MASW) method tries to utilize this dispersion property of surface waves for the purpose of Vs profiling in 1-D (depth) or 2-D (depth and surface location) format. The active MASW method generates surface waves actively by using an impact source like sledgehammer, whereas the passive method utilizes those generated passively by cultural (e.g., traffic) or natural (e.g., thunder and tidal motion) activities. Investigation depth is usually shallower than 30 m with the active method, whereas it can reach a few hundred meters with the passive method. Overall procedures with both methods are briefly described.

  • PDF

Evaluating the Output of Small-size Wind Power Generators Using Weibull Data (와이블데이터를 이용한 소형풍력발전기 출력에 대한 평가)

  • You, Ki-Pyo;Kim, Young-Moon
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study purposed to predict wind energy for small size wind power generators at 50m above the ground in each area using mean wind speed data for 10 minutes collected from 2001 to 2011 by meteorological data in large cities having over 60% of 15 story (50m) or higher apartments including Seoul, Daejeon, Gwangju and Daegu representing the inland region, and Busan, Incheon and Ulsan representing the coastal region. In the results of analysis, we confirmed close agree ment between observatory weather data and probability density distribution obtained using Weibull's parameters, and this suggests that Weibull's parameter is applicable to the estimation of wind energy. Hourly output energy using the mean wind speed for 10 minutes and output energy obtained from Weibull's parameter showed an error less than 5%, and thus it was found that wind energy can be evaluated using Weibull's modulus.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

A Study on Seismic Performance Evaluation of Tunnel to Considering Material Nonlinearity (재료의 비선형성을 고려한 터널의 내진성능평가에 관한 연구)

  • Choi, Byoungil;Ha, Myungho;Noh, Euncheol;Park, Sihyun;Kang, Gichun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.92-102
    • /
    • 2022
  • Various numerical analysis models can be used to evaluate the behavior characteristics of tunnel facilities which are representative underground structures. In general, the Mohr-Coulomb model, which is most often used for numerical analysis, is an elastic-perfect plastic behavior model. And the deformation characteristics are the same during the load increase-load reduction phase. So there is a problem that the displacement may appear different from the field situation in the case of excavation analysis. In contrast, the HS-small strain stability model has a wide range of applications for each ground. And it is known that soil deformation characteristics can be analyzed according to field conditions by enabling input of initial elastic modulus and nonlinear curve parameter and so on. However, civil engineers are having difficulty using nonlinear models that can apply material nonlinear properties due to difficulties in estimating ground property coefficients. In this study, the necessity of rational model selection was reviewed by comparing the results of seismic performance evaluation using the Mohr-Coulomb model, which civil engineers generally apply for numerical analysis of tunnels, and the HS Small strain Stiffness model, which can consider ground nonlinearity.

Evaluation of the change in Geotechnical properties due to the Construction of Civil engineering Structure using HWAW Method (HWAW방법을 이용한 토목구조물 건설에 따른 하부 지반 물성 변화 평가)

  • Park, Hyung-Choon;Noh, Hee-Kwan;Park, Byeong-Cheol;Kim, Min-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.182-187
    • /
    • 2010
  • In the various fields of Civil Engineering, shear modulus is very important input parameters to design many constructions and to analyze ground behaviors. In general, a shear wave velocity profile is decided by various experiments before constructing a structure and, analysis and design are carried out by using decided shear wave velocity profile of the site. However, if civil structures are started to construct, the shear wave velocity will be increased more than before constructions because of confining pressure increase by the load of structure. The evaluation of the change in shear wave velocity profile is used very importantly when maintaining, managing, reinforcing and regenerating existing structures. In this study, a non-destructively geotechnical investigation method by using the HWAW method is applied to an evaluation of change in properties of the site according to construction. Generally, the space for experiments is narrow when underground of existing or on-going structures is evaluate, so a prompt non-destructive experiment is required. This prompt non-destructive experiment would be performed by various in-situ seismic methods. However, most of in-situ seismic methods need more space for experiments, so it is difficult to be applied. The HWAW method using the Harmonic wavelet transforms, which is based on time-frequency analysis, determines shear wave velocity profile. It consists of a source as well as short receiver spacing that is 1~3m, and is able to determine a shear wave velocity profile from surface to deep depth by one test on a space. As the HWAW method uses only the signal portion of the maximum local signal/noise ratio to determine a profile, it provides reliability shear modulus profile such as under construction or noisy situation by minimizing effects of noise from diverse vibration on a construction site or urban area. To estimate the applicability of the proposed method, field tests were performed in the change of geotechnical properties according to constructing a minimized modeling bent. Through this study, the change of geotechnical properties of the site was effectively evaluated according to construction of a structure.

  • PDF