• 제목/요약/키워드: Modulus Load Test

검색결과 282건 처리시간 0.025초

재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성 (Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process)

  • 송창섭;김명환;김기범;박오현
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

아스팔트 포장하부구조 층모델 결정에 관한 연구 (A Parameter Study of Stuctural Respanse Model in Flexible Pavement Substucture Layers)

  • 최준성;서주원
    • 한국도로학회논문집
    • /
    • 제5권4호
    • /
    • pp.13-22
    • /
    • 2003
  • 국내의 경우 도로포장설계시 외국의 설계법을 단순히 도입하여 사용하고 있지만 건설재료,기후 및 교통조건 등이 외국과 상이하기 때문에 근본적 인 제한성이 있다. 특히, 국내 포장구조해석에서 아스팔트층 거동특성만을 중요시하는 해석은 포장구조체가 각 층의 영향을 받는 종합적인 거동특성을 보인다는 포장구조체 시스템적인 특성을 고려한다면 많은 문제점을 내포하고 있다. 따라서, 도로포장 설계시 합리적이고 경제적인 설계를 할 수 있도록 포장구조체의 해석 시스템을 구축하여야 한다. 본 연구에서는 비선형성이 포장체에 미치는 영향을 알아보기 위한 수치해석의 기본작업으로 다층구조상태인 포장체의 거동해석에 영향을 미치는 두께와 탄성계수 조합으로 구성된 243개의 표준단면과 하중종류에 따른 영향을 분석하여 응력의 변화분포가 큰 경우를 해석단면으로 결정하였다. 분석결과 탄성계수보다 층 두께의 영향이 더 큼을 알 수 있었다. 또한. 하중의 경우 원형등 분포하중인 정적하중과 FWD 시험하중을 비교한 결과 FWD 시험하중의 응력분포가 더 큼을 알 수 있었다. 결정된 해석단면을 이용하여 포장하부의 재료적 특성을 대변하는 비선형탄성모델을 각 층별로 적용시켜 기존의 선형탄성모델을 이용한 해석결과와 비교 분석한 결과 포장하부시스템 중 보조기층에서는 지반내 응력상태를 반영할 수 있는 비선형모델을 고려해야 하는 것이 보다 합리적임을 알 수 있었다.

  • PDF

매우 취성인 재료의 동적 파괴인성치 결정법 (Determination of Dynamic Fracture Toughnesses for very Brittle Materials)

  • 이억섭;전현선
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.160-165
    • /
    • 1997
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughnesses for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracturetoughnesses for very brittle materials because of the small crack initiation load which may be engulfed by the inertia load of the instrumented tup. To evaluate the dynamic fracture toughnesses of very brittle materials, such as chalk or plaster,it is thus, necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has very small Young's modulus comparing to one of the conventional steel tup, is used for the instrumented Charpy impact test, and a proper testing method to evaluate the dynamic fracture behavior of very brittle materials is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initiation of the very brittle materials.

  • PDF

Flexural properties of a light-cure and a self-cure denture base materials compared to conventional alternatives

  • Mumcu, Emre;Cilingir, Altug;Gencel, Burc;Sulun, Tonguc
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.136-139
    • /
    • 2011
  • PURPOSE. A new light curing urethane dimethacrylate and a cold curing resin with simpler and faster laboratory procedures may have even improved flexural properties. This study investigated the 3-point flexural strengths and flexural moduli of two alternate base materials. MATERIALS AND METHODS. A cold curing resin (Weropress) and a light curing urethane dimethacrylate base material (Eclipse). Along with Eclipse and Weropress, a high impact resin (Lucitone199) and three conventional base materials (QC 20, Meliodent and Paladent 20) were tested. A 3-point bending test was used to determine the flexural strengths and flexural moduli. The mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations for each group were analyzed by means of one-way analysis of variance (ANOVA) (with mean difference significant at the 0.05 level). Post hoc analyses (Scheffe test) were carried out to determine the differences between the groups at a confidence level of 95%. RESULTS. Flexural strength, displacement and force maximum load values of Eclipse were significantly different from other base materials. Displacement values of QC 20 were significantly different from Lucitone 199 and Weropress. CONCLUSION. The flexural properties and simpler processing technique of Eclipse system presents an advantageous alternative to conventional base resins and Weropress offers another simple laboratory technique.

재활용 도로재료의 회복탄성계수 산정을 위한 적용 모델의 평가 (Evaluation of Resilient Modulus Models for Recycled Materials)

  • 손영환
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.51-57
    • /
    • 2010
  • Many models have been used to represent the effects of confining stress, bulk stress, and shear stress on the value of the resilient modulus (Mr). This study was conducted to estimate Mr of the recycled materials such as recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) through the repeated load cyclic test. Also, two models were applied to estimation of Mr for comparing between measured Mr values and predicted Mr values. The first model (A-model) can provide a quick and easy estimation of the Mr based on the bulk stress, while the second model (N-model) includes not only the bulk stress but also the shear stress. Statistical analysis indicated that all results using the both of models are significant at a 95 % confidence level. Therefore, the both of models could be used as an effective prediction model of Mr for RCA and RAP. Especially, the Model 2 including the parameters of the bulk stress and the shear stress could give more reliable estimation at the high range of Mr values.

깊이 측정이 가능한 마이크로 압입 시험기 개발 및 성능평가 (Development and its Performance Evaluation of a Depth-Sensing Micro-Indentation Testing Device)

  • 정진성;김호경
    • Tribology and Lubricants
    • /
    • 제25권3호
    • /
    • pp.163-170
    • /
    • 2009
  • We developed a compact micro indentation testing device (designated SNUT) which is capable to measure Young's modulus of a sample using depth and applied load data during indentation. Performance of this device was evaluated using pure Ti, pure Ni, and die steel (SKD11). As a result of analysing the indentation test data, the frame compliance $C_f$ was found to influence mainly the modulus by 80% among several factors affecting accuracy of Young's modulus. Project area, which was determined by indirect indentation method, was modified using direct SEM observation. Finally, Young's modulus error was reduced to 5% after taking into consideration the frame compliance and modified projected area from 80% error without any these two correction factors. The performance of SNUT and MTS instruments was compared using same specimen (pure Ti).

IPC 거더 연속교의 실교량 내하력 평가 연구 (Load Bearing Capacity Evaluation of Continuous IPC Girder Bridge.)

  • 한만엽;황의승;진경석;강상훈;신재우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.475-478
    • /
    • 2005
  • This study was performed to evaluate about load bearing capacity of continuos IPC Girder Bridge under and after Construction. This is Ichi-1 Bridge that is 2-40m span continuous bridge on a extension road through the Ichun and the Naesa. The result of static loading test to use a 25ton truck after construction, deflection ratio is 0.64 that is $35\%$ and average of response ratio is 0.48$\~$0.89 that is less than theoretical value. The result of dynamic loading test, the number of proper vibrations is 3.06Hz that is like theoretical value 3.61Hz, the modulus of impact is 0.235 that is bigger than specification 0.19. the load bearing capacity is minimum DB-40 that is so big value. In the result, continuos IPC Girder Bridge is safe in short period. we will evaluate long period behavior of continuos IPC Girder Bridge.

  • PDF

FWD 방향을 고려한 콘크리트 포장 하부 상태 평가 (Evaluation of State of Concrete Pavement Sublayers Considering Direction of FWD)

  • 이재훈;이재훈;손덕수;유주호;정진훈
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.69-78
    • /
    • 2014
  • PURPOSES : The purpose of this paper is showing that the state of pavement sublayers can be evaluated differently according to direction of FWD. METHODS : The concrete pavement slabs above subgrade without anything, subgrade with cavity, and box culvert were modeled by finite element method(FEM). The modeled pavements were analyzed by changing the direction of falling weight deflectometer(FWD). The deflection results obtained from FEM were used to calculate radius of relative stiffness and composite modulus of subgrade reaction using AREA method. Then, the analyzed results were compared to the results of the test performed at the Korea Expressway Corporation(KEC) test road. RESULTS : The composite modulus of subgrade reaction increased with subgrade elastic modulus, while radius of relative stiffness decreased. The pavement sections of pure earth showed the consistent results regardless of FWD direction. In case there was cavity, the radius of relative stiffness was larger and composite modulus of subgrade reaction was smaller when FWD was leaving the cavity than when approaching the cavity. This pattern became clear when the cavity got larger. In case of the section with box culvert, the pattern was opposite to the case of cavity. When the soil cover depth increased, the effect of box culvert got smaller. When the load was applied far from the cavity and box culvert, the effect was also declined. The test performed at the KEC test road showed identical results to those of finite element analysis. CONCLUSIONS : The direction of FWD should be considered in evaluation of the state of pavement sublayers because it can be evaluated differently even under identical condition.

고분자 안경테의 온도에 의한 기계적 물성 변화 분석 (Analysis of Mechanical Property Changes of Polymer Eyeglass Frames by Thermal Impact)

  • 서호근;윤태양;노혜란
    • 한국안광학회지
    • /
    • 제19권4호
    • /
    • pp.429-434
    • /
    • 2014
  • 목적: 국내 유통되고 있는 고분자 소재 안경테의 열에 의한 기계적 물성을 분석하고자 하였다 방법: 본 연구에서는 cellulose acetate, polyamide, epoxy 그리고 polyetherimide 소재를 고온과 저온의 열에 노출시킨 후 만능 재료 시험기(Universal Test Machine TO-100-IC)를 이용하여 인장강도 시험(Tensile Strength Test)을 실시하였다. 다양한 온도에 따른($-25^{\circ}C$, $25^{\circ}C$, $60^{\circ}C$) 탄성 변화와 영률, 최대 변위, 그리고 피로거동을 관찰하였다. 결과: 그 결과, 상온($25^{\circ}C$)에서 충격 하중이 증가함에 따라 소재마다 변위가 다르게 나타났다. 낮은 온도($-25^{\circ}C$)에서 최대 변위는 모든 재료에서 감소하였으나 영률은 증가하였다. 그러나 높은 온도($60^{\circ}C$)에서는 최대 변위가 증가하고 영률이 감소하였다. 결론: 피로누적으로 인한 변형의 정도는 PEI, epoxy, polyamide, acetate 순으로 증가하여 나타났다. 안경테에 사용되는 고분자는 노출되는 온도에 따라서 소재마다 기계적 물성이 다르게 변화되어 나타났다.