• Title/Summary/Keyword: Module temperature

Search Result 1,228, Processing Time 0.031 seconds

A study on a precision temperature control unit using thermoelectirc module (열전소자를 이용한 정밀 항온 유지 장치에 관한 실험 및 시뮬레이션 연구)

  • Park, Kyung-Seo;Song, Young-Joog;Im, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay;Shin, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1937-1941
    • /
    • 2007
  • During a process of a nanoimprint for manufacturing LCD, a small temperature variation on the LCD glass can cause thermal stress and generate unexpected displacement. To avoid this trouble, a precision temperature control unit using thermoelectric modules is appropriate for nanoimprint processes. The unit consists of an air control system, a cooling water control system, and a power control system. The air control system includes a thermoelectric module, thermocouples measuring temperatures of air and a duct-stale fin, and two air fans. The heat generated by the thermoelectric module is absorbed by the cooling water control system. The power control system catches the temperature of the thermoelectric module, and a PID controller with SCR controls the input power of the thermoelectric module. Temperature control performance is evaluated by experiment and simulation. The temperature control unit is able to control the exit temperature about ${\pm}2^{\circ}C$ from the incoming fluid temperature, and the error range is ${\pm}0.1^{\circ}C$. However, the control time is approximately 30minute, which needs further study of active control

  • PDF

Case Study on 5kWp Transparent Thin-Film BIPV System (5kW급 투광형 박막 BIPV시스템의 실증연구)

  • An, Young-Sub;Kim, Sung-Tae;Lee, Sung-Jin;Song, Jong-Hwa;Hwang, Sang-Kun;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.29-35
    • /
    • 2010
  • This study has been carried out empirical research on Transparent Thin-film BIPV modules, BIPV modules installed on the exterior of the building are applied a laminated module 1kWp, double-glazing module 3kWp and triple-glazing module 1kWp. Applied to the total capacity of BIPV modules are 5kWp. In this study, design and construction process of BIPV systems is presented. In addition, through monitoring of the BIPV system, the temperature and the power characteristics of each module were analyzed. During the measurement period, the module temperature measurement results, the maximum surface temperature of $51.5^{\circ}C$ triple-glazing BIPV module showed the highest, followed by double-glazing BIPV module $49.1^{\circ}C$, $44.7^{\circ}C$ laminated modules, respectively. Power output results, the daily average double-layer modules showed 4.10kWh/day, triple-glazing module 1.57kWh, respectively 1.81kWh laminated modules. In particular, the power efficiency of triple-glazing BIPV module was lower than the power efficiency of the laminated BIPV module. This phenomenon is considered to be affected by the module temperature. In the future, BIPV modules in this study the relationship between module temperature and power characteristics plans to identify.

A study of the electrical characteristics changes of PV cell at high temperature (태양전지 셀의 고온에 의한 전기적 특성 변화 연구)

  • Jung, Tae-Hee;Shin, Jun-Oh;Kim, Tae-Bum;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.387-389
    • /
    • 2009
  • PV module is manufactured by several steps such as cell sort, tabbing & string, lay-up, lamination processes. In oder to manufacture PV module, solar cell must be placed in high temperature. Soldering Process in high temperature is important because it directly influences electric output performance changes of solar cell in solar cell module. We consider applying momentary high temperature, while soldering solar cell, and expect change electric characteristics of PV module. In this paper, we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. From these results, we confirm with application of high temperature, $I_{sc}$ increase and $V_{oc}$ slightly decreases.

  • PDF

Experimental Study on Bi-directional Air Cooling System for 18650 Li-ion Battery Module to Minimize Cell-to-Cell Temperature Variation (18650 Li-ion battery Module의 Cell-to-Cell 온도 편차 최소화를 위한 양방향 냉각에 대한 실험적 연구)

  • JANG, HOSUN;PARK, MINGYU;JEON, JIWHAN;PARK, SEONGSU;KIM, TAEWOO;PARK, SUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.407-418
    • /
    • 2017
  • Battery heat management is essential for high power and high energy battery system because it affects its performance, longevity, and safety. In this paper, we investigated the temperature of the 18650 Lithium Ion Battery Module used in a Energy Storage System (ESS) and the cooling method to minimize cell-to-cell temperature variation of battery module. For uniform temperature distribution within a battery module, the flow direction of the coolant in a battery module has been changed according to the time interval, and studied the effect of the cooling method on the temperature uniformity in a battery module which includes a number of battery cells. The experimental results show that bi-directional battery cooling method can effectively reduce the cell-to-cell temperature variation compared with the one-directional battery cooling. Furthermore, it is also found that bi-directional battery cooling can reduce the maximum temperature in a battery module.

An Experimental Study of a Water Type Unglazed PV/Thermal Combined Collector Module (액체식 Unglazed PVT 복합모듈의 성능실험연구)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.184-189
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously In general, two types of PVT can be distinguished: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type unglazed PVT combined module, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.05% average and its PV efficiency was about 11.85% average, both depending on solar radiation, inlet water temperature and ambient temperature.

  • PDF

An Experimental Study of a Water Type Glazed PV/Thermal Combined Collector Module (액체식 Glazed PVT 복합모듈의 성능실험 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal (PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously. In general, two types of PVT can be distinguished : glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type PVT combined module, glass-covered, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.6% average and its PV efficiency was about 10.0% average, both depending on solar radiation, inlet water temperature and ambient temperature.

Fluid Flow and Temperature Distribution around a Surface-Mounted Module Cooled by Forced Air Flow in a Portable Personal Computers (휴대용 PC내에 실장된 강제공랭 모듈 주위의 유체유동과 온도분포)

  • Park S.H.;Shin D.J.;Lee I.T.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.729-732
    • /
    • 2002
  • This paper reports an experimental study around a module about forced air flow by blower($35{\times}35{\times}6mm^3$) in portable PC(10mm high, 200mm wide, and 235mm long). The channel inlet flow velocity has been varied between 0.26, 0.52 and 0.78m/s. The power input to the module is 4Wthis report, particular attention is directed to the fluid flow and adiabatic wall temperature($T_(ad)$) around a module which is under fluid mechanical and thermal influences of the module. The fluid flow around a module was visualized using PIV system. Liquid crystal thernography is used to determine the adiabatic wall temperature around a heated module on an acrylic board. Plots of $T_(ad)$ (or F) show marked effects of dispersion of thermal wake near the module.

  • PDF

Effects of Ambient Temperature on the Thermal Characteristics of Photovoltaic Modules (대기온도에 따른 태양전지 모듈의 열적 특성에 관한 연구)

  • Kim, Jong-Pil;Jeon, Chung-Hwan;Chang, Young-June
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.48-52
    • /
    • 2008
  • The photovoltaic modules are affected by heat. The hotter the PV module, the lower the power output, then the life time will be short. If the cell temperature rises above a certain limit the encapsulating materials can be damaged, and this will degrade the performance of the PV module. This paper presents that the PV module temperature can be estimated by using thermal analysis programs, and demonstrates the thermal characteristics of the PV module.

  • PDF

TEMPERATURE CONTROL SYSTEM in PLC (PLC에서의 온도 제어 시스템 구현)

  • Song, S.W.;Oh, Y.S.;Ryou, J.S.;An, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1063-1065
    • /
    • 1996
  • As PLC has become central to today's FA environment, the importance of developing and providing special-module of PLC such as Analog-module, PID-module, Temperature Control-module has increased. In this paper introduces the Temperature Control-module which is developed by LGIS R&D lab. and presents the availability of PLC-control system with Temperature Control-module.

  • PDF

Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler (멀티버너 보일러용 열교환기 모듈 특성 시험 - 모듈 순서에 따른 특성결과 -)

  • Kang, Sae-Byul;Kim, Jong-Jin;Ahn, Joon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3053-3058
    • /
    • 2008
  • We develop a heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a heat recovery steam generator (HRSG). This heat recovery system has 4 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 1 MPa and tested steam pressure is 0.7 MPa. In order to test these heat exchanger modules, we make a 0.5t/h flue tube boiler (LNG, $40\;Nm^3/h$). We tested the heat exchanger module with changing the position of each heat exchanger module. We measured the inlet and outlet temperature of each heat exchanger module and calculated the heat exchange rate. The results show that if module C is placed at second stage (the 1st stage is always module O, bare tube module), there is no need to attach an additional heat exchanger module. In this case the exit temperature of module C is low enough to enter an economizer which is more effective in heat recovery than a heat exchanger module.

  • PDF