• Title/Summary/Keyword: Module Method

Search Result 3,113, Processing Time 0.029 seconds

Intelligent Diagnostic System of Photovoltaic Connection Module for Fire Prevention (화재 예방을 위한 태양광 접속반의 지능형 진단 시스템)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • To prevent accidents caused by changes in the surrounding environment or other factors, various protection facilities are installed at the photovoltaic connection module. The main causes of fire are sparks due to foreign substances inside the photovoltaic connection module through high temperature rise and dew condensation in the photovoltaic connection module, and fire due to heat from the power diode. The proposed method can predict the fire by measuring flame, carbon dioxide, carbon monoxide, temperature, humidity, input voltage, and current on the photovoltaic connection module, and when the fire conditions are reached, fire alarm and power off can be sent to managers and users in real time to prevent fire in advance.

An Object-Based Verification Method for Microscale Weather Analysis Module: Application to a Wind Speed Forecasting Model for the Korean Peninsula (미기상해석모듈 출력물의 정확성에 대한 객체기반 검증법: 한반도 풍속예측모형의 정확성 검증에의 응용)

  • Kim, Hea-Jung;Kwak, Hwa-Ryun;Kim, Sang-il;Choi, Young-Jean
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1275-1288
    • /
    • 2015
  • A microscale weather analysis module (about 1km or less) is a microscale numerical weather prediction model designed for operational forecasting and atmospheric research needs such as radiant energy, thermal energy, and humidity. The accuracy of the module is directly related to the usefulness and quality of real-time microscale weather information service in the metropolitan area. This paper suggests an object based verification method useful for spatio-temporal evaluation of the accuracy of the microscale weather analysis module. The method is a graphical method comprised of three steps that constructs a lattice field of evaluation statistics, merges and identifies objects, and evaluates the accuracy of the module. We develop lattice fields using various evaluation spatio-temporal statistics as well as an efficient object identification algorithm that conducts convolution, masking, and merging operations to the lattice fields. A real data application demonstrates the utility of the verification method.

Design and Implementation of Turbidity Measurement Module of Plume using Optical Sensing (광학센싱을 이용한 굴뚝연기의 혼탁도 측정모듈의 설계 및 구현)

  • Ban, ChaeHoon;Son, HyunGeun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.312-315
    • /
    • 2014
  • Smoke generated from business establishments and factories will not only cause air pollution but also have a significant impact on the human body. Generally, the most common method for measuring the turbidity of the plume generated from the stack is a method of observing by the transmissometer mounted in the chimney or Method 9 from the US EPA(Environmental Protection Agency) which is a visual method of determining plume turbid emitted from stationary sources. However, these methods need a lot of cost to build and maintain. In this paper, we build a plume turbidity measurement module programs using light sensing. We design and implement a module which acquires the pictures of the plume using a digital camera and measures the turbidity of it using the DOM(Digital Optical Method). In addition, we demonstrate the excellence by comparing and analyzing implemented module and other methods.

  • PDF

Design of a Vibration-Powered Piezoelectric Energy-Harvesting Module by Considering Variations in Excitation Frequency (외부 가진 가변 주파수를 고려한 압전 진동 에너지 수확 모듈의 설계)

  • Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • A vibration-powered piezoelectric energy harvester yields the maximum power output when its resonant frequency is made equal to the excitation frequency; however, the power output is dramatically decreased when the energy harvester is operated at off-resonance frequency. It has been observed that the resonant frequency of a piezoelectric energy harvester may change with time and that the excitation frequency often varies when the energy harvester is used in real applications. Hence, in this study, we propose a piezoelectric energy-harvesting module that is suitable for excitations in a certain frequency range. The frequency characteristics of the electrical output of the module are studied through analysis and experiment. A simple frequency tuning method is also suggested for the proposed energy-harvesting module; in this method, frequency tuning is achieved by changing the electrical connections between the constituent energy-harvesting units of the module.

Improvement of the Power Generation of Photovoltaic Generation System using Rotating Reflector (회전 반사판을 이용한 태양광발전장치의 발전량 향상)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.157-162
    • /
    • 2020
  • In the existing photovoltaic generation system, the system equipped with the reflecting plate is a method in which solar energy (insolation) is concentrated on the surface of the photovoltaic module. However, the solar energy (insolation) lost by being reflected back through the solar module is not considered. Although a method of increasing the amount of power generated by installing a reflector around the solar modules has been proposed, this affects the power generation degradation caused by the shading of other solar modules. Therefore, in order to improve this problem, in this paper, 1) without affecting the development of photovoltaic module according to the shade, 2) photovoltaic module using a reflector rotating the solar energy (insolation) lost by the solar module Study and suggest how to join again. Therefore, the loss of solar energy (insolation) can be minimized through the method of recycling the solar energy according to the countless reflection angle of the lost solar energy (insolation). As a result, it is possible to increase the amount of power generation of the photovoltaic generation system by maximizing the amount of power generation for the same solar radiation.

An Infrared Communication Module for the Enhancement of Hearing Aids (보청기 성능 향상을 위한 적외선 통신 모듈)

  • Park, Seong Mo
    • Smart Media Journal
    • /
    • v.7 no.3
    • /
    • pp.29-34
    • /
    • 2018
  • This paper presents a study on adapting optical communication technology using infrared ray for the enhancement of hearing aids in noisy environment. The transmitter module containing microphone and infrared ray-emitting diode converts audio signal to infrared optical signal and sends it out in the air. The receiver module located in a distance receives the infrared signal, converts it to electrical signal, and transfers it to an input of a digital hearing aid. Especially, the receiver module needs to be small, low voltage, and consume low power since it will be attached to hearing aids. Experiments with applying infrared communication technology of digital modulation method and analog non-modulation method show that the analog non-modulation method is adequate for infrared communication of approximately 5m distance indoor. Prototypes of transmitter module and receiver module were manufactured, and internal parameters of the digital hearing aid were adjusted to confirm normal transmit-receive operation of audio signals.

A Cyber-Training & Education Model for Tug-barge Operators

  • Lee, Eun-Bang;Yun, Jong-Hwui;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.4
    • /
    • pp.287-292
    • /
    • 2010
  • The purpose of this study was to create a cyber-training & education program in response to the needs of skippers and crews operating tug-barges within Korean coastal waters and the rapid changers in this industry. Skippers and crews are inclined to operate tug-barges on the basis of experience rather than information. It is not easy to provide useful information whenever they want or to drill them in safety management skills, because of their passive attitude toward education and the few opportunities that exist. In order to increase educational opportunities, efficiency and motivation, the authors have developed this program which consists of a 'tug bridge resource management module, risk perception training module, accident case module, operating module and navigation module', and are hoping that this program will enhance and strengthen all tug-barge operations. We are also putting all our energies into designing up to date animation programs and developing new scenarios concerning the method of evaluation and certification distribution.

Motion Planning and Control for Mobile Robot with SOFM

  • Yun, Seok-Min;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1039-1043
    • /
    • 2005
  • Despite the many significant advances made in robot architecture, the basic approaches are deliberative and reactive methods. They are quite different in recognizing outer environment and inner operating mechanism. For this reason, they have almost opposite characteristics. Later, researchers integrate these two approaches into hybrid architecture. In such architecture, Reactive module also called low-level motion control module have advantage in real-time reacting and sensing outer environment; Deliberative module also called high-level task planning module is good at planning task using world knowledge, reasoning and intelligent computing. This paper presents a framework of the integrated planning and control for mobile robot navigation. Unlike the existing hybrid architecture, it learns topological map from the world map by using MST (Minimum Spanning Tree)-based SOFM (Self-Organizing Feature Map) algorithm. High-level planning module plans simple tasks to low-level control module and low-level control module feedbacks the environment information to high-level planning module. This method allows for a tight integration between high-level and low-level modules, which provide real-time performance and strong adaptability and reactivity to outer environment and its unforeseen changes. This proposed framework is verified by simulation.

  • PDF

Fluid Flow and Temperature Distribution Around a Surface-Mounted Module Cooled by Forced Air Flow in a Portable Personal Computers (휴대용 컴퓨터 내에 실장된 강제공랭 모듈 주위의 유체유동과 온도분포)

  • Park,Sang-Hee;Shin, Dae-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2004
  • This paper reports an experimental study around a module about forced air flow by blower (35${\times}$35${\times}$6㎣) in a portable personal computer model(200${\times}$235${\times}$10㎣). Experimental report is to know three data to investigate thermal resistance, adiabatic wall temperature and visualized fluid flow around the module by combination of the moving number and the arrangement method of blower. The channel inlet flow velocity has been varied between 0.26, 0.52 and 0.78㎧, and input power ( $Q_{p}$) to the module is 4W. To investigate thermal resistance. the heated module is mounted on two boards(110${\times}$110${\times}$1.2㎣, k=20.73, 0.494W/ $m^{\circ}C$) in parallel-plate channel to forced air flow. The temperature distribution were visualized by heated module on acrylic board(k=0.262W/ $m^{\circ}C$) using liquid crystal film. Fluid flow around the module were visualized using particle image velocimetry system.

Analysis on Power Generation Characteristics of a Vehicle Rooftop Photovoltaic Module with Urban Driving Conditions (도심 주행 조건에 따른 차량 탑재 태양광모듈의 발전특성 분석)

  • Jeon, Seonwoo;Choung, Seunghoon;Bae, Sungwoo;Choi, Jaeyoung;Shin, Donghyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.79-86
    • /
    • 2020
  • This study examines the power generation characteristics of a vehicle rooftop photovoltaic module with urban driving conditions. Actual test data with an illuminometer and a thermometer were used to analyze the power generation characteristics of the vehicle rooftop photovoltaic module. In addition, the power generation characteristics were analyzed in terms of urban driving conditions, irradiance, ambient temperature, and photovoltaic module temperature. This study also analyzes the power generation characteristics of the vehicle rooftop photovoltaic module with urban driving conditions through a wavelet transform filtering method. The power generation characteristics of the vehicle rooftop photovoltaic module with urban driving conditions depend on the change in irradiance rather than that in photovoltaic module temperature.